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Abstraction Functions as Types

Modular Verification of Algorithms and Data Structures

HARRISON GRODIN, RUNMING LI, and ROBERT HARPER, Carnegie Mellon University, USA

Modular development of programs relies on the principle that library code may be freely replaced without

affecting client behavior. While an interface mediating this interaction should require a precise behavior of

its implementations, allowing for downstream verification of client code, it should do so in a manner that

allows private algorithmic and representation choices to vary freely. In this work we demonstrate how such

modularity can be achieved in dependent type theory using a phase distinction between private algorithmic

content and public client-facing behavior.We observe that modalities associatedwith such a phase distinction

and their corresponding theorems, particularly noninterference and fracture, give rise to precise descriptions

of common constructions surrounding algorithms and data structures. Using a modal construction to classify

types that sufficiently restrict client-facing behavior, we use the noninterference property for the phase to

state and prove a modularity property guaranteeing that implementations may be freely replaced without af-

fecting behavior. We then cast the fracture property in the light of abstraction functions, showing internally

that every type consists of a private algorithmic component, a public behavioral component representing an

abstract data type, and an abstraction function between them that is uniformly activated by the behavioral

phase for streamlined verification of client correctness. Finally, we use phased quotient types to ergonomi-

cally mark private data for behavioral deletion. We situate this development in a univalent adaptation of Calf,

a dependent type theory for cost analysis, in order to amplify these points: beyond hiding private implemen-

tation details, we treat cost as a private matter that may be varied freely without affecting the behavior of

clients.

CCS Concepts: • Theory of computation → Type theory; Logic and verification; Program analysis;

Categorical semantics; • Software and its engineering→ Functional languages.

Additional Key Words and Phrases: phase distinction, noninterference, information flow, modal type theory,

abstraction, abstraction function, abstract data type, data structure, algorithm, equational reasoning, verifica-

tion, mechanized proof, proof assistants

1 INTRODUCTION

Software development is fundamentally a community effort, spread over space and time, with no
one person having a complete mastery of the code involved. Therefore, the single most effective
tool in software development is the composition of programs from reusable, replaceable parts that
are not under the control or influence of any one developer. Developers rely on abstractions—some
form of type—to describe the assumptions that clients may rely upon when using a component,
and, correspondingly, the obligations that implementors must provide. The essence of modularity
is that implementations of the same abstraction may be freely swapped out without any impact
on the behavior of the surrounding program.
Consider one such abstraction, the queue abstract data type �eue, and suppose some client

code 5 : �eue → - implements a type - using its input queue implementation as library code.
The essence of modularity is the guarantee that queue implementations can be freely replaced
without affecting the functional behavior of 5 :

for all @, @′ : �eue, we have that 5 (@) = 5 (@′).

Assuming that there is some basic implementation, @0 : �eue, this description amounts to saying
that the type �eue is contractible (i.e., singleton, terminal, or equivalent to the unit type). This
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idea is harmonious with the intuitive understanding a client should have about queues: the behav-
ior should be completely pinned down. We could achieve such a contractible type by defining

�eue ≔
∑

@:Pre�eue

@ = @0,

where Pre�eue describes a type equipped with queue operations and the constraint @ = @0
restricts the type and operations in @ to match the behavior mandated by the specification @0.
Say the specification @0 has representation type List N, a canonical form for queues. Then,

other implementations would have to come equipped with a proof that their implementation type
is equivalent to List N, and the queue operations cohere according to this equivalence. The clev-
erness of an implementation typically serves to improve upon the efficiency of the naive code
given as the behavioral specification @0. While the type List N × List N used to implement
batched queues does not immediately satisfy this property, Angiuli et al. [4] demonstrate how
to use quotient types in a univalent setting to identify states that induce equivalent client behav-
ior. For example, we could quotient the type List N × List N by equivalence under the function
revAppend : List N× List N→ List N which converts a pair of lists representing a queue to their
single-list correspondent.
Although the use of contractible types as specifications achieves modularity, it is at the ex-

pense of concerns about efficiency. The identification of data with equivalent functional behavior
is pervasive: one cannot hope to uniformly extract the code that does not depend on its presence.
However, the purpose of an implementation other than the specification is efficiency: although its
behavior is fixed, the cleverness of its implementation serves to improve upon the naive code given
as the behavioral specification. It is paramount, therefore, to retain differences between algorithms
and data structures that implement a given behavior: although a queue can be thought of as a list
of elements when analyzing behavior, a more clever representation (e.g., a pair of lists without a
quotient) may be preferable internally.
To mediate this tension between efficient code and behavioral verification, we introduce a syn-

thetic phase distinction [43] between private algorithmic choices and public behavior. If we then
relax the requirement on �eue, asking only for it to be behaviorally contractible, we allow the
retention of algorithmic content that differs between queue implementations even though equiv-
alent states must be behaviorally identified. We then get a weakened property that guarantees
modularity of behavior:

for all @, @′ : �eue, we have that 5 (@) ⊜ 5 (@′),

where G ⊜ G ′ denotes behavioral equivalence. To implement queues using a pair of lists, we may
then choose to activate the quotient only in the behavioral phase.
Technically, this phase is realized as a proposition ¶beh in dependent type theory corresponding

to the assumption of operating with concern only for functional behavior. The proposition gives
rise to various devices in type theory, including a behavioral modality for entering the behavioral
phase, an algorithmic modality for marking data as behaviorally-irrelevant [38]. The modularity
property can be proved from these modalities within the type theory.
The use of a phase distinction allows us to integrate both algorithmic and behavioral concerns

into a single program, justified by the fracture theorem [38, §3.4]. This theorem says that every type
can be fractured into (or reconstructed from) three parts: a public behavioral type -◦, a private
algorithmic type -•, and an abstraction function [23] U : -• → -◦ that converts the concrete
representation of type -• to the abstract behavior of type -◦. In other words, every representation
type inherently comes equipped have a conversion to its behavioral representation type, concisely
stated by the following slogan:



Abstraction Functions as Types 111:3

Types are abstraction functions.

Semantically, every type may be interpreted as a presheaf that incorporates both algorithmic and
behavioral content, which can be constructed synthetically within type theory using the fracture
theorem. For example, we will arrange for the presheaf

©
«

List N × List N

List N

revAppend

ª®®®
¬

to be the semantics of the type implementing batched queues, storing a pair of lists as the ef-
ficient algorithmic representation alongside the single-list behavioral perspective. The included
revAppend function will fire automatically in the behavioral phase, irreversibly fusing the pair of
lists into the simpler single-list representation for behavioral verification.
We situate our story in Calf, a type theory for synthetic cost analysis, which advocates for the

use of such a phase under which cost annotations are erased [31]. Our development builds on this
perspective, continuing to treat cost annotations as private algorithmic data although extending
the use case of behaviorally contractible types to classify types that provide a sufficiently descrip-
tive behavioral verification. We demonstrate the need for a more liberal use of the algorithmic
modality and related erasure techniques: if implementations are to meet a unique behavior speci-
fied by an algorithmic interface, we show that the types involved must explicitly mark their own
private data for redaction. We now introduce these ideas formally, recalling key elements of the
phased Calf type theory and theorems about the phase modalities.

1.1 Effectful dependent type theory

To support effectful programs in dependent type theory, we operate in a dependent type theory
that distinguishes between running computations and inert values, both in terms and types. We
work in a version of call-by-push-value [26], inspired by Ahman et al. [3], Krishnaswami et al.
[25], Pédrot and Tabareau [35], Vákár [48]. We include features of the Enriched Effect Calculus
[12, 13], adapted to the dependent setting. Additionally, we use the linear universe structure of
Krishnaswami et al. [25] (with levels omitted for simplicity), writing V for the universe of value
types and C for the universe of computation types (both of which are, themselves, value types).

Val. -,. , / ::= U(�) | N | List - | 1 |
∑

G :- . (G) |
∏

G :- . (G) | � ⊸ � | V | C | G =- G ′

Comp. �, �,� ::= F(- ) |
∏

G :- �(G)

We freely use standard abbreviations and notations for readability, such as - ⇀ � ≔

∏
G :- �. We

use commonnotations for programs involving these types, such as pattern matching on ret(G) (the
introduction form for the F(- ) type) as the elimination form for F(- ). Following Calf [31], we also
use the “less bureaucratic” form of adjoint type theory in which the introduction and elimination
forms for the U(�) type are left implicit.
In Section 4 we assume commutativity of the effects present and use the monoidal structure

(⊤, ⊗) given by linear/non-linear type theory [6, 25]:

�, �,� ::= · · · | ⊤ | � ⊗ �
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1.2 Univalent equality

This work takes place in a univalent type theory [37, 47] equipped with proof-relevant extensional
equality G =- G ′ (i.e., path types). We assume the following extensionality principles for equality:

5 =
∏

G :- . (G ) 5
′
≔

∏
G :-

5 (G) =. (G ) 5
′(G) (1a)

(G,~) =∑
G :- . (G ) (G

′,~′) ≔
∑

? :G=-G ′

?∗(~) =. (G ′ ) ~
′ (1b)

- =V - ′
≔

∑
5 :-→- ′

isEquivV (5 ) (1c)

� =C �′
≔

∑
5 :�⊸�′

isEquivC (5 ) (1d)

In a univalent setting equality of dependent products and sums are given extensionally. Moreover,
the principle of univalence says that equality at the universes of value types V and computa-
tion types C is equivalence [37, Chapter 9], using linear functions as maps between computation
types [12, 13], where

isEquivV (5 : - → - ′) ≔
∑

B,A :- ′→-

(B ; 5 = id- ′ ) × (5 ; A = id- )

isEquivC (5 : � ⊸ �′) ≔
∑

B,A :�′⊸�

(B ; 5 = id�′) × (5 ; A = id�)

say that 5 is an equivalence when it admits both a section and a retraction.
Although we are working in a univalent setting, the types we consider will all be set-truncated

(aside from the universes V and C). Thus, when we define a higher inductive type (in this work,
only quotient types), we omit explicit set-truncation for brevity.

1.3 Behavioral phase distinction

To facilitate the development proposed above, we postulate a synthetic phase distinction [41, 43]
that allows the uniform isolation of the behavioral semantics of programs. Specifically, the be-

havioral phase1 is a postulated proposition ¶beh : V that, when inhabited, erases details relevant
only for efficiency, leaving behind only the behavior for analysis of correctness. Because ¶beh is a
proposition, we always use variable name _ : ¶beh for convenience.

1.3.1 Behavioral and algorithmic modalities. Associated with the proposition ¶beh are a pair of
idempotent monadic modalities, the behavioral modality and the algorithmic modality [38].

Definition 1.1. The behavioral modality #- ≔ ¶beh → - is the reader monad for the type ¶beh,
imposing the behavioral phase to suppress cost information and isolate the behavioral aspect of a
type - . We say a type - is behavioral when #- = - ,2 and we call an inhabitant of a behavioral
type a behavior. We say a type family . : - → V is behavioral when . (G) is behavioral for all
G : - , and we say a map 5 : . → - is behavioral when fib5 (G) ≔

∑
~:. 5 (G) = ~ is behavioral.

1We use the “behavioral/algorithmic” terminology in place of the “extensional/intensional” terminology from previous

developments of Calf [20, 31], avoiding confusion with the unrelated ideas of extensional/intensional type theory and

mathematical extensionality principles while emphasizing the abstraction viewpoint of this work.
2In other work this notion has been referred to as open-modal/#-modal [38], ¶beh-transparent [42, 45], and (purely) exten-
sional [20, 31] types.
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Wemay unambiguously use the same notation for a dependent variant of the behavioral modal-
ity, as well: given a type family - : ¶beh → V, we write #- for

∏
_:¶beh - (_). Additionally, we

write G ⊜ G ′ as a shorthand for #(G = G ′).

Definition 1.2. The algorithmic modality  - marks a type as behaviorally irrelevant: crucially,
we have that# - = 1. It is defined as the pushout of the behavioral equivalence c1 : -×¶beh → -

along the map c2 : - × ¶beh → ¶beh, sometimes written  - ≔ - ∨ ¶beh:

- × ¶beh ¶beh

-  -

c1

c2

∗

[•

y

data  (- : V) : V where

[• : - →  -

∗ : {_ : ¶beh} →  -

_ : (G : - ) {_ : ¶beh} → [•G = ∗

For convenience, we make the argument to the constructor ∗ of type ¶beh implicit, indicated with
braces. The quotient case induced by the pushout must be respected by users of this modality:
when casing on data of type - , both the [• and ∗ cases must agree (behaviorally, because ∗ may
only be constructed assuming ¶beh holds). We say a type - is algorithmic when  - = - ,3 and
we call an inhabitant of an algorithmic type an algorithm. We say a type family . : - → V is
algorithmic when . (G) is algorithmic for all G : - , and we say a map 5 : . → - is algorithmic
when fib5 (−) is algorithmic.

Lemma 1.3. Algorithmic data can be characterized in terms of their behavior:

(1) a type - is algorithmic exactly when #- is contractible [38, Example 1.31], and

(2) a map 5 : . → - is algorithmic exactly when#5 : #. → #- is an equivalence [38, Lemma

1.35 and Theorem 3.1].

Algorithmic types will be a central notion in this work, describing classes of algorithms that all
share a single behavior. Although an algorithmic type may have many inhabitants, they must all
implement the same behavior, rendering the type behaviorally trivial. For an algorithmic type - ,
we have that #- is contractible; we refer to center of contraction G0 : #- as the behavior of - ,
because all algorithms of type - collapse to G0 under the aegis of the behavioral phase.

1.3.2 Noninterference and modularity. These modalities admit the statement and proof of a nonin-
terference theorem, which states that the algorithmic content of an implementation does not impact
the behavior of its clients. This ensures that implementations may be freely substituted for one
another without changing client behavior, even though algorithmic-level details about the client
(such as cost) may be impacted.

Theorem 1.4 (Noninterference [31]). Let - be an algorithmic type, and let . be an arbitrary

type. Then, the function space - → . is behaviorally equivalent to . .

The essence of this theorem is that behaviorally, G0 is the unique input of type - (up to equiva-
lence). This means that given a program of type . using an algorithm of type - , we may choose
any convenient implementation when verifying behavioral correctness.

Corollary 1.5 (Modularity). Let- be an algorithmic type, and let. be an arbitrary type. Then,

for all 5 : - → . and G, G ′ : - , we have that behaviorally, 5 (G) = 5 (G ′).

In other words: for an implementation 5 of . depending on an algorithmic type - , we may
freely swap any G : - for any G ′ : - and guarantee identical behavior.

3In other work this notion has been referred to as closed-modal/ -modal [38],#-connected [38], ¶beh-sealed [42, 44, 45],

and (purely) intensional [20, 31] types.
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Remark 1.6 (Security). Modularity and the behavioral phase may be viewed through the lens of
security, where the behavioral phase corresponds to a public, low-security environment and the
default algorithmic phase corresponds to a private, high-security environment [45]. By default, we
operate in the private environment, capable of writing secret implementation details pertaining to
cost and clever implementation. When we switch to the public environment, though, implementa-
tion details (including cost) are redacted. It is in this sense that the behavioral phase guarantees a
notion of abstraction and modularity: private data is guaranteed to be redacted in the public phase
and may therefore be swapped with any other private data at will with no impact. y

1.3.3 Fracture and gluing. Importantly, every type consists of a behavioral component, an algo-
rithmic component, and a function mapping the latter to the former, understood in this work as
an abstraction function.

Theorem 1.7 (Fracture and Gluing [38]). Let V be the universe of (value) types, and let V◦

and V• be the universes of behavioral and algorithmic types, respectively. There is an equivalence

V =

∑
-◦ :V◦

∑
-• :V•

-• →  -◦

between types - : V and their fracturing into a behavioral type -◦, an algorithmic type -•, and an

abstraction function U : -• →  -◦.

Proof Sketch. We give an isomorphism explicitly. In the forward direction, fracture the type
- by sending it to the triplet (#-, -, [◦- ). In the reverse direction, glue the parts (-◦, -•, U) by
sending them to the following pullback, which we denote Glue(-◦, -•, U):

Glue(-◦, -•, U) -•

-◦  -◦

U

[•
-◦

y
Glue(-◦, -•, U) ≔

∑
G◦ :-◦

∑
G• :-•

[•-◦
G◦ = UG•

The round-trip condition on V says that every type - : V can be recovered by the following
pullback of #- and  - :

-  -

#-  #-

[◦
-

[•
-

 [◦
-

[•
#-

y - =

∑
G◦ :#-

∑
G•: -

[•
#-G◦ =  [

◦
-G•

The other round-trip condition ensures that #Glue(-◦, -•, U) = -◦ and  Glue(-◦, -•, U) = -•.
�

1.3.4 Semantics. We recall three important semantic models of Calf, differing centrally in their
interpretation of the behavioral phase proposition, ¶beh.

Semantics 1 (Behavioral). We may interpret ¶beh as the true proposition. Because the assump-
tion that programs exist only for their behavior is true, programs collapse to their behavioral or
mathematical interpretations. In this setting #- = - ,  - = 1, and Glue(-◦, -•, U) = -◦.

Semantics 2 (Algorithmic). We may interpret ¶beh as the false proposition. Because the assump-
tion that programs exist only for their behavior is false, all behavioral assumptions are erased,
leaving behind the standard algorithmic implementation. In this setting #- = 1,  - = - , and
Glue(-◦, -•, U) = -•.
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Semantics 3 (Presheaf). Calf can be given aKripke semantics in the Sierpinski topos, i.e. presheaves
on the “walking arrow” category 2 ≔ {◦ → •} [31, §5]. Each type - is interpreted as a presheaf
È-É, where È-É• is the algorithmic component and È-É◦ is the behavioral component. The in-
duced map È-É• → È-É◦ can be thought of as an abstraction function, converting the private,
algorithmic representation È-É• to the public, behavioral representation È-É◦. For example:

È-É ≔

©
«

È-É•

È-É◦

ª®®®®
¬

ÈNÉ ≔

©
«

N

N

id

ª®®®
¬

È¶behÉ ≔よ(◦) =
©
«

0

1

ª®®®
¬

Standard base types, such as N, are interpreted as constant presheaves, with identical algorithmic
and behavioral components and the identity function between them. The behavioral phase ¶beh
is defined as the Yoneda embedding of ◦ : 2, with an empty algorithmic component and a trivial
behavioral component, combining Semantics 1 and 2. The modalities are interpreted as follows:

È#-É = È¶beh → -É =

©
«

È-É◦

È-É◦

id

ª®®®®
¬

È -É = È- ∨ ¶behÉ =

©«

È-É•

1

ª®®®¬
Notice that a type - is behavioral when it is interpreted as a constant presheaf with È-É• = È-É◦
and algorithmic when it has È-É◦ = 1. In other words a type is behavioral when its intrinsic
abstraction function is an equivalence, and a type is algorithmic when its intrinsic abstraction
function is a unique map into 1 that fully erases information. Gluing can be viewed as synthetically
constructing a presheaf,

ÈGlue(-◦, -•, U)É =

©
«

È-•É•

È-◦É•

ÈUÉ•

ª®®®®
¬
,

where ÈUÉ : È-•É → È -◦É is a map of presheaves. In this sense every type is interpreted as
an abstraction function, describing (the algorithmic parts of) types -• and -◦ with an associated
abstraction function to erase private details.

1.4 Cost as an effect

In Calf cost is treated abstractly as an effect: we write �arge〈2〉(0) for a print-like effect that
records 2 : C units of abstract cost before running the computation 0 : �, where C is a value
type representing cost equipped with a monoid structure (0,+).4 The cost effect is governed by
the following laws, using the monoid operations associated with cost algebra C.

Axiom 1.8. The cost effect respects the monoid (C, 0,+):

�arge〈0〉(0) = 0 (2a)

�arge〈21〉(�arge〈22〉(0)) = �arge〈21 + 22〉(0) (2b)

In Calf it is crucial that the cost algebraC be algorithmic: this allows the cost effect to be omitted
in the behavioral phase, supporting reasoning about correctness without involving their cost.

4We alter the notation step2 (−) from previous developments in Calf, emphasizing that 2 is counting an abstract notion of

cost, not the number of evaluation steps.
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Axiom 1.9. The cost algebra C is algorithmic.

Theorem 1.10. If ¶beh holds, then for all 2 : C, we have �arge〈2〉(4) = 4 .

Proof. Suppose ¶beh holds, and let 2 : C be arbitrary. Then, because C is algorithmic, it is
contractible. Therefore, all elements of C are equal, so 2 =C 0. The result follows by Eq. (2a). �

Remark 1.11. Although the presence of cost amplifies the importance of certain issues in this
paper, the techniques developed here for modular verification of algorithms and data structures
stand freely without cost annotations, as well. In particular note that the trivial monoid is a valid
cost model, as C ≔ 1 is algorithmic. y

In this paper, as in Calf [31], we choose to define C ≔  N for the purpose of our examples. For
convenience, we avoid [• when constructing costs, and we avoid the use of ∗ in favor of 0.

1.5 Contributions

In this paperwe identify algorithmic types as a novel source of semantic modularity suitable for the
compositional verification of behavior, elevating the concept of algorithmicity from merely a tool
for cost erasure to a more general programmer-facing construct for guaranteeing the client-facing
redaction of choices made for the purpose of efficiency. We demonstrate sources of algorithmic
types that specify common algorithms and data structures, using the fracture/gluing property and
behavioral quotients to mark algorithmic details for erasure in the behavioral phase, guarantee-
ing that algorithms and data structures may be swapped out interchangeably without affecting
behavior. This perspective lends itself to a simple and precise consolidation of many concepts
about algorithms and data structures, including benign effects, abstraction functions, relational
parametricity, views, and smart constructors.

Synopsis. This paper is organized as follows. In Section 2 we consider the specification of sorting
algorithms to justify the claim that algorithmic types are a sensible notion for the specification of
algorithmic problems, and we consider subtleties that arise with uniqueness of outputs and modu-
larity. In Section 3 we expand the story to data structures and abstract data types, considering an
algorithmic type specifying persistent queues and implementing the representation type as a syn-
thetic abstraction function via gluing. In Section 4 we present an ergonomic approach to specify-
ing synthetic abstraction functions implicitly using behavioral quotients to redact efficiency-only
aspects of representation types when verifying behavior of client code. Finally, in Section 5 we
summarize results, connect to related work, and suggest directions for future development.

2 ALGORITHMIC TYPES AS BEHAVIORAL SPECIFICATIONS

To specify an algorithmic problem, it is typical to make precise the intended behavior that the
corresponding algorithms must implement. Algorithms may then implement the given behavior
with various cost characteristics. This notion is made precise via algorithmic types: although an
algorithmic typemayhavemany inhabitants, it must behaviorally be a singleton, contracting down
to the single guaranteed behavior required by the specification.

2.1 Constructing algorithmic types

The canonical strategy for constructing an algorithmic type out of an arbitrary type - consists of
providing a behavior G0 : #- and then considering the subtype of - consisting of all G : - that
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behaviorally match G0, which we write as {- | ¶beh ↩→ G0(_)}
5:

{- | ¶beh ↩→ G0(_)} ≔
∑
G :-

G ⊜ G0(_)

This type is always algorithmic, with behavior

_(_ : ¶beh). (G0(_), _(_ : ¶beh). refl) : #{- | ¶beh ↩→ G0(_)};

the proof is a minor phase-sensitive adaptation of a standard argument from homotopy type the-
ory [37, Theorem 10.1.14]. In fact any algorithmic type can be put in this form: if . is algorithmic
with behavior ~0, then . = {. | ¶beh ↩→ ~0}.

Example 2.1. To classify all sorting algorithms, we may use the algorithmic type

{U(List N⇀ F(List N)) | ¶beh ↩→ isort},

where an element is a function 5 : U(List N⇀ F(List N)) equipped with a proof that its behavior
matches insertion sort, 5 ⊜ isort. y

Although this technique does accurately describe all algorithmic types, it can obfuscate the
intended verification strategy. For example, to show that merge sort or randomized quick sort
is a valid sorting algorithm (i.e., inhabits the type given in Example 2.1), one has to prove that
msort ⊜ isort or qsort ⊜ isort. Although this is true, the proof itself is structured around the idea
that isort,msort, and qsort are all valid sorting algorithms on ListN, and all such sorting algorithms
are equivalent, as verified by Niu et al. [31]. Taking this perspective, we can give a more ergonomic
version of the algorithmic type of Example 2.1.

Example 2.2. Let IsSorted(;) be a propositional type family over ListN that is inhabited exactly
when list ; is sorted, and let IsPerm(;, ; ′) be a propositional type family over List N × List N that
is inhabited exactly when list ; is a permutation of list ; ′.6 For every list ; , there exists a unique list
; ′ such that the types IsSorted(; ′) and IsPerm(;, ; ′) are inhabited7; therefore, the type

SortedPerm(;) ≔
∑

; ′:List N IsSorted(;
′) × IsPerm(;, ; ′)

is contractible (and therefore algorithmic) for all ; : List N.
Absent of any restrictions on the effects available, the type U(F(SortedPerm(;))) need not be

algorithmic; for example, if errors are available from the monad U(F(−)), an inhabitant of this
type could either return or error. However, the type

★SortedPerm(;) ≔ {U(F(SortedPerm(;))) | ¶beh ↩→ ret(G0(_))}

is algorithmic, where G0 : #(SortedPerm(;)) is the behavior of SortedPerm(;). Behaviorally,
an inhabitant computation 4 : U(F(SortedPerm(;))) is restricted to be ret(G0(_)), returning a
value; even though 4 may use monadic effects, such as cost (in insertion sort and merge sort) and
nondeterminism/randomization (in quick sort [20]), the effects must be benign, trivializing in the
behavioral phase.
Abstracting over the list ; : List N to be sorted, we get that the type

Sort ≔

∏
; :List N★SortedPerm(;)

is algorithmic, describing all sorting algorithms. This type Sort is equivalent to the algorithmic
type of Example 2.1; however, although Sort is also equipped with a behavior (of type #(Sort))

5We use a notation inspired by extension types [36, 43]. However, we use typal equality, because the proof that an algorithm

matches its behavioral reference need not be definitional.
6In some definitions, such as the Agda standard library [46], these type families may not be immediately propositional. In

that case, one can propositionally truncate [37, §14] to obtain propositionality.
7The proof of this fact is a sorting function, without cost annotations, serving as the center of contraction.
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based on the proof of algorithmicity, this fact is not explicit in the type itself, which streamlines
the implementation of sorting algorithms of this type Sort. y

Remark 2.3. When verifying programs in a dependent type theory, one typically faces the issue
of not knowing how much needs to be proved. For example, in the case of sorting algorithms,
domain-specific knowledge suggests that one should prove that the output list is sorted and a per-
mutation of the input list. However, how can one justify that both properties are required? Because
if either requirement is omitted, the resulting type fails to be algorithmic! The proposal of algo-
rithmic types in this work provides a general theoretical foundation for making such guarantees:
one knows that an algorithm specification is precise enough when its type is algorithmic. y

The principles used in Example 2.2 are instances of more general techniques that allow us to
specify an algorithmic problem via a property that its results should satisfy uniquely. First, we
elaborate on the ★ construction.

Definition 2.4. Let - be an algorithmic type with behavior G0 : #- . We write

★- ≔ {U(F(- )) | ¶beh ↩→ ret(G0(_))}

for the type of computations of type U(F(- )) that behaviorally return. This operator preserves
algorithmicity, sending an algorithmic type - to an algorithmic type ★- . Moreover, ★ forms a
monad on the universe of algorithmic types, which we refer to as the benign effect monad (relative
to the monad U(F(−))).

The concept of benign effects slots in smoothly with the perspective that the behavioral phase
erases private details: in the benign effect monad, while effects may be used for implementation
purposes, a client must not observe the effects behaviorally.
For an algorithmic problem that takes inputs of type - , the valid output can be described as an

algorithmic type family. (G), for each G : - . Then, wemay use dependent products and the benign
effect monad to encode an algorithmic problem as an algorithmic type, abstracting Example 2.2.

Theorem 2.5. Let - be an arbitrary type, and let . : - → V be a family of types indexed by -

such that each . (G) is algorithmic8. Then, the type
∏

G :- . (G) is algorithmic.

Proof. Follows from dependent products preserving contractability [47, Lemma 3.11.6]. �

Combining Theorem 2.5 with the benign effect monad preserving algorithmicity, we recover
Example 2.2, where - ≔ List N and . (G) ≔ ★SortedPerm(G). Variations of - and . give other
common algorithmic problem shapes.

Example 2.6. Let % : - → V be a family of decidable propositions: every % (G) is a proposition,
and for every G : - , either % (G) or ¬% (G). Then, letting

. (G) ≔ ★(% (G) + ¬% (G)),

we have that
∏

G :- . (G) is the type of decision procedures for % . Behaviorally, there is a single
inhabitant of this type that states whether % (G) or ¬% (G) holds. In general, though, algorithms of
type

∏
G :- . (G) can have various cost characteristics. y

Example 2.7. Let - ≔ NonemptyList N be the type of nonempty lists of natural numbers, and
let Element G be the type of inhabitants of G . Defining

. (G) ≔ ★

∑
=:Element G

∏
=′:Element G = ≤N =′,

8In practice . (G ) will often be contractible, not merely algorithmic.
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data -/�: V where

[ : - → -/�
_ :

∏
G,G ′ :- G �- G ′ → [G ⊜ [G ′

(a) Behavioral quotient by preorder isomorphism.

data ‖- ‖¶beh : V where

[ : - → ‖- ‖¶beh
_ :

∏
G,G ′ :- [G ⊜ [G ′

(b) Behavioral truncation.

Fig. 1. Behavioral quotients used to behaviorally ignore stability of sorting.

we have that
∏

G :- . (G) is the type of algorithms that find the minimum number contained in a
nonempty list. Behaviorally, there is a single inhabitant of this type, although multiple algorithms
may implement this type; for example, an optimized algorithm could exit early returning 0 if it is
ever found in the list. y

Overall, this development hinges on the idea that . (G) itself is algorithmic; in other words,
there is (behaviorally) a unique answer that can be expected from every algorithm implementation.
Sometimes, this is not the case, though: multiple solutions to a problem could exist. Just as we use
the algorithmic modality to quotient away information in the behavioral phase, we can use other
behavioral quotients to ensure algorithmicity in the case that multiple solutions are possible.

2.2 Disambiguating specifications using behavioral quotients

Sometimes, an algorithm may produce an output that is not, a priori, uniquely determined by its
input. An algorithm may be allowed to produce one of many valid solutions; for example, in an
arbitrary comparison-based sort, stable and unstable sorting algorithms differ on how they treat
comparison-isomorphic elements. At first glance, this seems to trivialize the entire subject of al-
gorithmic types: is it not desirable to have many possible answers? However, this fundamentally
breaks modularity (Corollary 1.5): if multiple behaviors are allowed, one cannot freely swap out
algorithms. For example, if client code may view the results of stable and unstable sorting algo-
rithms differently, it could have different behavior depending on the stability. To avoid this issue,
we may use behavioral quotients to explicitly identify distinct behaviors.

Example 2.8. In Example 2.2 we showed that the type of algorithms that sort a list of natural
numbers is algorithmic. How can we generalize this result to sorting algorithms for an arbitrary
element type -? In the implementation of sorting algorithms it is essential that the preorder on
elements of type - be total. However, under only these conditions, it is not true that a sorted per-
mutation of a list exists uniquely. For example, if- ≔ N×stringwhere comparison is performed at
the first component only, then both [(3, "a"), (3, "b")] and [(3, "b"), (3, "a")] are sorted permuta-
tions of [(3, "a"), (3, "b")]. To recover algorithmicity, we must alter the types involved such that
any comparison-isomorphic permutations are considered equal. Two approaches to accomplish
this are given as follows:

(1) We may ask that the ordering relation on element type - is behaviorally antisymmetric.
Say that a comparison relation ≤- is antisymmetric when the type

Antisymmetric(≤- ) ≔
∏

G,G ′ :- G �- G ′ → G = G ′

is inhabited, where G �- G ′ ≔ (G ≤- G ′) × (G ′ ≤- G). If ≤- is behaviorally antisymmetric,
then the type

∏
; :List - ★SortedPerm(;) is algorithmic. Because the comparison relation

≤N is antisymmetric (and thus behaviorally antisymmetric), this scenario directly general-
izes that of Example 2.2. If the ordering relation on - is not behaviorally antisymmetric,
though—such as for - ≔ N × string with comparison of numbers only—we may behav-
iorally quotient - to identify comparison-isomorphic elements in the behavioral phase.
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This new type -/�, shown in Fig. 1a, consists of a quotient of - by the equivalence rela-
tion ¶beh × �. In Semantics 1 this is simply a quotient as usual, and in Semantics 2, -/� is
equivalent to - because the quotient is vacuous. Now, although (3, "a") and (3, "b") are
distinct, the injections [ (3, "a") and [ (3, "b") are equal at type -/�.

(2) Alternatively, we may leave the element type unmodified and instead behaviorally propo-
sitionally truncate the type of sorted permutations, using the behavioral truncation given
in Fig. 1b. In Semantics 1 this is simply propositional truncation ‖- ‖, and in Semantics 2,
‖- ‖¶beh is equivalent to - because the quotient is vacuous. Using this truncation, the type∏

; :List -

★‖SortedPerm(;)‖¶beh

is algorithmic, because differing sorted permutations are behaviorally identified.

Notice that in either case, programs using the result of a sorting algorithm must have identical
behavior on identified sorted permutations. Although operating on one permutation may have
differing cost compared to another, the quotients ensure that the same behavior is always encoun-
tered given comparison-equivalent permutations. y

Sometimes, it is discussed whether a sorting algorithm is stable, preserving the original rela-
tive ordering of comparison-isomorphic elements. The perspective of Example 2.8 suggests that
stability of sorting algorithms is an algorithmic property, possibly affecting efficiency but never
affecting behavioral correctness. Saying that a sorting algorithm is (un)stable is akin to proving
a cost bound: algorithmically, this may matter, but behaviorally, there is still only one sorting
function.

Remark 2.9. If stability is desired for correctness, one could strengthen the requirements im-
posed by the type in exchange for avoiding the behavioral quotients. For example, one could use
a stable sorting algorithm as a specification implementation, such as

{U(List - ⇀ F(List - )) | ¶beh ↩→ isort}

adapted from Example 2.1. This algorithmic type describes a different class of algorithms, the
“stable sorting algorithms”, as opposed to the “sorting algorithms” described in Example 2.8. When
the comparison ordering ≤- is behaviorally antisymmetric, these notions coincide. y

Behavioral quotients may be used in the specification of many other algorithms. For example,
algorithms that find extremal solutions commonly refer to the extreme only up to some heuristic
(such as the shortest path using path length, or a maximal spanning tree using tree weight); then,
a behavioral quotient can ensure that the behavior of downstream code does not depend on the
representative solution.

2.3 Compositional verification via modularity

By noninterference (Theorem 1.4) and modularity (Corollary 1.5), the behavioral verification of
code downstream of an algorithmonly depends on the unique behaviormandated by the algorithm;
therefore, any algorithm implementation may be selected for convenience.

Example 2.10. Consider the following piece of downstream code, where minimum finds the
least element of its input list:

downstream : U(Sort ⇀ List N⇀ List N)
downstream sort ; ≔ sort (minimum ; :: ;)
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We may wish to prove some facts about the behavior of downstream on various inputs. For
example, we may wish to show that for all sort and ; ,

downstream sort ; ⊜ minimum ; :: sort ; .

One proof technique is to argue in terms of the definition of being a sorted permutation ofminimum ; ::

; , which all elements of type Sort are obliged to produce. More cleverly, though, we may simply
pick a sorting algorithm that makes this theorem easy to prove, such as (in this case) insertion sort.
To prove the general claim, it suffices to show that

downstream isort ; ⊜ minimum ; :: isort ;,

for all ; , which follows straightforwardly from the definition of insertion sort. y

3 ABSTRACT DATA TYPES, DATA STRUCTURES, AND GLUING

Using the behavioral phase, we may classify a type equipped with operations that restricts to a
known behavior fromwithin the phase, expressing the notion of an abstract data type. The informal
definition of an abstract data type is well-known:

In computer science an abstract data type (ADT) is a mathematical model for data
types, defined by its behavior (semantics) from the point of view of a user of the
data, specifically in terms of possible values, possible operations on data of this type,
and the behavior of these operations. [1]

To describe an abstract data type, it is essential to describe the behavior a client can expect from
its data structure implementations, which can be reified as a type-level requirement using the
behavioral phase. For example, consider the following “signature” Pre�eue:

Pre�eue ≔
∑
- :V

(empty : - ) × (enqueue : U(- ⇀ N⇀ F(- ))) × (dequeue : U(- ⇀ F(N × - )))

A reader might intuit from the included labels that this interface describes an abstract data type
that contains natural numbers: a value type - equipped with an empty instance, an operation to
add a natural number to an instance, and an operation to remove a natural number.Which abstract
data type is being described, though—stacks, queues, sets, priority queues, or something else?

3.1 Gluing along abstraction functions

Tomake precisewhich of these choices the interface Pre�eue is meant to classify, wemay restrict
to inhabitants of this type that have a mandated behavior @0 : #Pre�eue as in Section 2.1,
creating an algorithmic type. For example, to describe queues, we might choose @0 to be a cost-
free implementation of a queue based on lists:

�eue ≔ {Pre�eue | ¶beh ↩→ (List N, [], (_; . _=. ret(; ++ [=])), uncons)}

By restricting the behavior of the given operations to match the intended behavior of a queue, this
algorithmic type�eue exactly represents the queue abstract data type. Via the structure identity
principle (Eq. (1b)), an element of this type consists of a quadruple

(-, ?) : {V | ¶beh ↩→ List N}

empty : {- | ¶beh [?] ↩→ []}

enqueue : {U(- ⇀ N⇀ F(- )) | ¶beh [?] ↩→ _; . _=. ret(; ++ [=])}

dequeue : {U(- ⇀ F(N × - )) | ¶beh [?] ↩→ uncons}
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batchedQueue : �eue

batchedQueue.- ≔ Glue(#(List N), (List N × List N), (revAppend ; [◦))
batchedQueue.empty ≔ ([◦[], [•( [], []))
batchedQueue.enqueue (G◦, G•) = ≔

ret((_(_ : ¶beh). G◦(_) ++ [=]), (_(;1, ;2). (= :: ;1, ;2)) (G•))
batchedQueue.dequeue (G◦, [

•(;1, = :: =B)) ≔ ret(=, (_(_ : ¶beh). tail(G◦(_))), [
•(;1, =B))

batchedQueue.dequeue (G◦, [
•(;1, [])) with �arge〈|;1 |〉(reverse ;1)

· · · | [] ≔ ret(0, [◦ [], [•( [], []))
· · · | = :: =B ≔ ret(=, (_(_ : ¶beh). tail(G◦(_))), [

•( [], =B))
batchedQueue.dequeue (G◦, ∗) with uncons(G◦(_))

· · · | (=, ;) ≔ ret(=, [◦;, ∗)

Fig. 2. The definition of a batched queue, using copa�ern matching notation [2].

where we write {- | ¶beh [?] ↩→ G0(_)} ≔
∑

G :- #(?∗(G) = G0(_)) to classify all G : - that behav-
iorally match G0 up to transportation across an equivalence ? . Although the behavior of - is fixed
to be List N, the algorithmic part can be chosen freely so long as it coheres.
Classically, to give a representation type -• modeled by List N, the programmer is to give a

meta-theoretic abstraction function, U : -• → List N, that gives the behavioral semantics of an
element of -• as a list.

The first requirement for the proof [of behavioral correctness] is to define the re-
lationship between the abstract space in which the abstract program is written,
and the space of the concrete representation. This can be accomplished by giving
a function [U] which maps the concrete variables into the abstract object which
they represent. . . Note that in this and in many other cases [U] will be a many-one
function. Thus there is no unique concrete value representing any abstract one. [23]

In this phase-separated setting such abstraction functions become first-class notions, fused into
the very definition of the representation type by gluing. To choose a type - with - ⊜ List N,
i.e. #- = #(List N), we have by the fracture property (Theorem 1.7) that it suffices to give an
algorithmic type -• : V and a map U : -• →  (#(List N)) and glue them with #(List N).

Example 3.1 (Batched Queue). To implement functional queues with efficient amortized cost, a
pair of lists may be used: incoming data is enqueued to the “inbox” list, and outgoing data is usually
dequeued from the “outbox” list, unless it is empty, in which case the “inbox” data is moved to the
“outbox” [11, 18, 24, 33]. In order to implement a queue in this way, we use gluing, selecting an
algorithmic representation type -• and an abstraction function U : -• →  (#(List N)):

-• ≔  (List N × List N) U ≔  (revAppend ; [◦)

where revAppend (;1, ;2) = ;2 ++ rev(;1). Encoded within the type Glue(#(List N), -•, U) itself is
the idea that every pair of lists can be transformed to its abstract single-list representation by
appending the reversed inbox list to the outbox. Using this gluing as the representation type, we
define batchedQueue : �eue in Fig. 2.
The implementation of empty pairs a behavioral empty list and an algorithmic pair of empty

lists; the implementation of enqueue incorporates number = into both the behavioral list G◦ :

#(List N) and the algorithmic pair of lists G• :  (List N × List N); and the implementation
of dequeue implements batched queue dequeue when G• = [•(;1, ;2) and implements the required
behavior when G• = ∗. Within this code, some important proofs are omitted for readability:
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(1) Throughout the code, each glued pair (G◦, G•) : #(List N) ×  (List N × List N) comes
equipped with a proof that the components cohere according to U .

(2) The cases [• and ∗must (behaviorally) agree, by the definition of the algorithmic modality.
(3) This definition must come with a proof that each component matches the mandated behav-

ioral specification, @0. The type matches by the gluing construction (Theorem 1.7), and the
operations must be shown to match.

The fact that these definitions behaviorally restrict to@0 is crucial for implementing the algorithmic
type�eue: when algorithmic content (cost annotations and the G• component of (G◦, G•) pairs) is
erased in the behavioral phase, we recover the specification queue,@0, which is the unique behavior
of all queues. y

Remark 3.2 (Abstraction Function). The function U : -• →  (#(List N)) being glued along is
a linguistic reification of the venerable notion of an abstraction function [23], taking a concrete
data representation -• to its representative list. Using the fracture and gluing theorem (Theo-
rem 1.7), we observe that the phase distinction equips every type with an “abstract” component
-◦, a “concrete” component -•, and an abstraction function. Entering the behavioral phase causes
all abstraction functions to activate implicitly, leaving behind only “abstract” components and for-
getting “concrete” implementation details. This is emphasized through the various semantics of
glued type - :

(1) In Semantics 1 the semantics is simply List N, retaining the behavioral requirement for
the implementation type although obliterating the pair-of-lists split.

(2) In Semantics 2 the semantics recovers the usual functional implementation of batched
queues, because the single-list representation is now hidden under an impossible assump-
tion.

(3) In Semantics 3 the semantics maintains both the “concrete” batched and “abstract” single-
list representations, as well as the abstraction function revAppend, all within type - :

È-É ≔ ÈGlue(#(List N), (List N × List N), U)É =

©
«

List N × List N

List N

revAppend

ª®®®
¬

Even the cost model C has both components: because C is algorithmic by Axiom 1.9, we have
that the “abstract” part of C is simply trivial. The behavioral phase distinction provides a unifying
syntax capable of being compiled to mathematical behavior, efficient algorithms, or both side-by-
side. y

Remark 3.3 (Synthetic Parametricity). In their presentation of batched queues Sterling andHarper
[43, §4.1] similarly provide a conjoined implementation of a list queue (here, @0) alongside a
batched queue (here, batchedQueue) connected by a (functional) relation, revApp. Using a pair of
symmetric (“left” and “right”) phases, either the list queue or the batched queue may be isolated
by entering the appropriate phase. Instead, we emphasize here the functional nature of the re-
lation (given as U): we only allow a coercion of our conjoined implementation to the privileged
specification @0, chosen as the canonical meaning of “queue”, via the behavioral phase. We recover
a theorem analogous to their representation independence result [43, Theorem 4.1] via nonin-
terference (Theorem 1.4): for all result types ' and functions 5 : �eue → ', we have that
5 (@0 (_)) ⊜ 5 (batchedQueue). y

Remark 3.4 (Relational Correspondence). If two representation types implement the same ab-
stract data type, they can be given a many-to-many heterogeneous relation as is traditional in
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parametricity arguments [29]. For any types -1, -2 equipped with proofs ?8 : -8 ⊜ List N, we can
define a relation ' as the behavioral pullback of ?1 and ?2:

'

-1 -2

#-1 #-2

#(List N)

y

[◦
-1

[◦
-2

?1 ?2

' ≔

∑
G1:-1

∑
G2 :-2

?1∗ (G1) ⊜List N ?2∗ (G2)

In other words, G1 : -1 and G2 : -2 are related exactly when their behaviors as lists match. Note that
this type ' itself satisfies ' ⊜ List N. Then, queue operations on -1 and -2 induce a queue imple-
mentation A : �euewith A .- = ', recovering an analytic analogue of the synthetic parametricity
structures of Sterling and Harper [43] in our synthetic behavioral setting. y

Generalizing this approach beyond queues, wemay think of an abstract data type as a behaviorally-
fixed type equipped with some behaviorally-fixed operations. To construct an implementation
type, we may always use gluing as a canonical technique, because by Theorem 1.7, every type -
is constructed via gluing (up to equivalence).

3.2 Compositional verification of behavior

It has long been understood that the behavior of code dependent on abstract data types should
only depend on the behavior guaranteed by the ADT.

If the data representation is proved correct, the correctness of the final concrete
program depends only on the correctness of the original abstract program. [23]

When a programmer makes use of an abstract data object, he is concerned only
with the behavior which that object exhibits but not with any details of how that
behavior is achieved by means of an implementation. [28]

We now capitalize on this principle to verify client programs of the queue abstract data type.

Example 3.5. Consider the following program demonstrating a simple usage pattern for a
queue, enqueueing the number 3 to an empty queue and immediately dequeueing:

demo : U(�eue ⇀ F(N))
demo @ ≔ let ret(G) = @.enqueue (@.empty) 3 in@.dequeue G

To verify the behavior of demo, we show that demo @ ⊜ ret(3) for all queue implementations
@ : �eue. As in Section 2.3, we may choose an arbitrary representative implementation, such as
batchedQueue, without loss of generality. The behavioral equivalence between demo(batchedQueue)
and ret(3) holds judgmentally, so the theorem holds. y

Example 3.6. Another simple example usage of queues is to reverse a list by enqueueing its
elements and dequeueing them in reverse order, implemented in qreverse in Fig. 3. We may verify
that the behavior of this qreverse function matches the usual list reverse specification, reverse: we
show that qreverse @ ⊜ reverse for all queue implementations @ : �eue. Under the behavioral
phase, we know by construction that @ is equivalent to the specification queue, @0(_); in other
words, @ ⊜ @0(_). Swapping the queue usages in fromList and toList for the queue specification
@0(_), we can see that fromList is exactly the reverse function, and toList is exactly the identity
function on lists. Thus, the behavior of qreverse is equivalent to reverse. Although it is possible to
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fromList : U(
∏

@:�eue List N⇀ F(@.- ))
fromList @ [] ≔ ret(@.empty)
fromList @ (= :: =B) ≔
let ret(@D4D4) = fromList @ =B in

@.enqueue = @D4D4

toList :

U(
∏

@:�eue N⇀ @.- ⇀ F(List N))
toList @ zero G ≔ ret( [])
toList @ (suc :) G ≔

let ret(=, G ′) = @.dequeue G in

let ret(=B) = toList @ : G ′ in

ret(= :: =B)

qreverse :

U(�eue ⇀ List N⇀ F(List N))
qreverse @ ; ≔

let ret(@D4D4) = fromList @ ; in

toList @ |; | @D4D4

reverse : U(List N⇀ F(List N))
reverse [] ≔ ret( [])
reverse (= :: =B) ≔
let ret(=B′) = reverse =B in

ret(=B′ ++ [=])

Fig. 3. List reverse implemented using a queue, qreverse, and a direct list reversal function, reverse.

verify this fact about batchedQueue directly, the proof is more involved; using the algorithmicity
of the �eue type allows us to choose a convenient implementation for verification of this fact,
such as the list representation of queues, @0(_). y

4 BEHAVIORAL PROPERTIES AND DATA STRUCTURE QUOTIENTS

Many common abstract data types classify free/inductive algebraic structures. For example, finite
ordered sequences are classified by the free monoid, finite multisets are classified by the free com-
mutative monoid, and finite sets are classified by the free semilattice. In this section using finite
ordered sequences as our primary example, we explore how to form an algorithmic type that clas-
sifies data structures implementing a free algebraic structure, and we use behavioral quotients to
implicitly imbue implementations with abstraction functions.

4.1 Behavioral properties

Behaviorally, it is well understood that the free monoid classifies finite ordered sequences of data,
henceforth referred to as sequences [9]. Free monoids are unique up to behavioral equivalence:
mathematically speaking, lists are the only free monoid. Algorithmically, though, there are many
ways to implement data structures modeling the freemonoid, all with different cost profiles: arrays,
(“linked”) lists, finite functions, trees, and various balanced trees, to name a few. Each implemen-
tation consists of a type � equipped with a “raw monoid” structure (including the capability for
effects):

RawMonoid ≔

∑
�:C

(empty : U(�)) × (append : U(� ⊗ � ⊸ �))

To be considered a monoid, these operations must satisfy some additional properties, identity
and associativity, rendered in the presence of effects as follows:

LeftIdentity(emp, app) ≔
∏

0:U(�) app(emp, 0) = 0

RightIdentity(emp, app) ≔
∏

0:U(�) app(0, emp) = 0

Associative(app) ≔
∏

01,02,03 :� app(app(01, 02), 03) = app(01, app(02, 03))

As in the Agda standard library[46], we package these definitions as follows:

Identity(emp, app) ≔ LeftIdentity(emp, app) × RightIdentity(emp, app)
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addMonoid : Monoid◦On N

addMonoid.� ≔ F(N)
addMonoid.empty ≔ ret(0)
addMonoid.append (ret(=1), ret(=2)) ≔ �arge〈1〉(ret(=1 + =2))
addMonoid.singleton = ≔ ret(=)

Fig. 4. Behavioral monoid implementing addition of natural numbers, instrumented with a cost of 1 per

addition operation. The behavioral IsMonoid proof is omi�ed for brevity.

IsMonoid(emp, app) ≔ Associative(app) × Identity(emp, app)

In the presence of cost, though, implementations of empty and append only satisfy these prop-
erties behaviorally.

Example 4.1. Lists with a cost model considering recursive calls form a raw monoid:

listRawMonoid : RawMonoid

listRawMonoid.� ≔ F(List N)
listRawMonoid.empty ≔ ret( [])
listRawMonoid.append (ret(;1), ret(;2)) ≔ �arge〈|;1 |〉(ret(;1 ++ ;2))

However, this raw monoid does not satisfy the axioms for a monoid when cost is under consid-
eration. Although the append function does have empty as a left identity,

listRawMonoid.append (ret( []), ret(;)) = �arge〈0〉(ret( [] ++ ;)) = ret( [] ++ ;) = ret(;),

it only behaviorally has empty as a right identity for non-empty ; ,

listRawMonoid.append (ret(;), ret( [])) = �arge〈|; |〉(ret( [] ++ ;)) ⊜ ret( [] ++ ;) = ret(;),

since the left side costs |; | and the right side costs zero. Associativity also holds only behaviorally.
y

Since the monoid properties can only be expected to hold behaviorally, we work not with
monoids, but instead with behavioral monoids:

Monoid◦ ≔
∑

(�,empty,append) :RawMonoid

#(IsMonoid(empty, append))

In this definition a behavioral monoid consists of a raw monoid equipped with a proof that be-
haviorally, the raw monoid operations indeed form a monoid. Note that behaviorally, a behavioral
monoid is just a monoid: entering the behavioral phase recovers the usual notion of a monoid.
Now, to develop sequences, we further equip a behavioral monoid with a generator, serving to

create a singleton sequence, for an element type � : V :

Monoid◦On � ≔

∑
" :Monoid◦

(singleton : U(� ⇀ ".�))

For example, we can implement a behavioral monoid on N that performs addition as shown in
Fig. 4, even when the addition operation is annotated with cost such that it only satisfies the
identity laws in the behavioral phase.
To describe ordered sequences on �, we additionally ask for amapreduce function for each other

behavioral monoid on �, the recursor sending a sequence of type ".� to the carrier of another
behavioral monoid,"′ .�:

PreSeqence � ≔

∑
" :Monoid◦On �

(
mapreduce :

∏
"′ :Monoid◦On �

U(".� ⊸ "′ .�)

)
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listPreSequence� : PreSeqence �

listPreSequence� .� ≔ F(List �)
listPreSequence� .empty ≔ ret( [])
listPreSequence� .append (ret(;1), ret(;2)) ≔ �arge〈|;1 |〉(ret(;1 ++ ;2))
listPreSequence� .singleton 4 ≔ ret( [4])
listPreSequence� .mapreduce "′

≔ foldr ("′ .empty) (_4 0. "′ .append ("′ .singleton 4, 0))

Fig. 5. Implementation of PreSequence � using the list type as the representation type.

Example 4.2. We may define implement PreSeqence � using the list type as a representative
implementation, as shown in Fig. 5. To implement mapreduce, we use the structure of"′ to com-
bine the list elements. y

As with the type Pre�eue used in the queue example of Section 3, there are many possible
implementations of PreSeqence �. To adapt PreSeqence � into an algorithmic type, we must
restrict the behavior of implementations to ensure that the monoid operations andmapreduce are
universal. One viable strategy would be to require behavioral coherence with listPreSequence� :

Seqence � ≔ {PreSeqence � | ¶beh ↩→ listPreSequence�}

However, just as the “unbiased” definition of Sort from Example 2.2 was more ergonomic than
the “isort-biased” definition from Example 2.1, we may use the universality of the free monoid to
provide an equivalent unbiased definition of Seqence � more ergonomic for verification.

4.2 Phased universal properties

To state the universality of the free monoid, we will ask that mapreduce be some form of homo-
morphism. However, when cost is considered, mapreduce need not preserve the Monoid◦On �

structure. Thus, we will ask that mapreduce only behaviorally preserve structure.

Definition 4.3. Let ","′ : Monoid◦On �. A behavioral homomorphism from " to "′ consists
of a function 0 : ".� ⊸ "′ .� that behaviorally preserves the operations:

0(".empty) ⊜ "′ .empty

0 ◦".append ⊜ "′ .append ◦ (0 ⊗ 0)

0 ◦".singleton ⊜ "′ .singleton

We write the type of behavioral homomorphisms as Hom# (","′).

Using behavioral homomorphisms, we can define the algorithmic type of sequences to be the
behaviorally-initial Monoid◦On �:

Seqence � ≔

∑
" :Monoid◦On �

∏
"′ :Monoid◦On �

∑
U :Hom# (","′ )

∏
U ′:Hom# (","′ )

#(U = U ′).

In other words a sequence consists of " : Monoid◦On � with a representation type and empty,
append, and singleton constructors, alongside amapreduce function (taking"′) whose universal
property is guaranteed by the behavioral uniqueness and preservation of the monoid structure. In
the behavioral phase this type restricts to the usual mathematical definition of an initial object of
typeMonoid◦On �, which must be unique; this causes the type Seqence � to be algorithmic.

Example 4.4. Paired with a proof that mapreduce is behaviorally the unique homomorphism
from" to"′ , the data listPreSequence� comprises an implementation listSequence� : Seqence �.

y
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data Tree (� : V) : V where

empty : Tree �

leaf : � → Tree �

node : Tree � → Tree � → Tree �

idl :
∏

C :Tree � node C empty ⊜ C

idr :
∏

C :Tree � node empty C ⊜ C

assoc :
∏

C1,C2,C3 :Tree � node (node C1 C2) C3 ⊜ node C1 (node C2 C3)

Fig. 6. Type representing binary trees behaviorally quotiented by the monoid laws.

Without loss of generality, then, we may view [◦(listSequence�) as the behavior of Seqence �.

4.3 Behavioral quotients as representation types

In Section 3.1 we use gluing to construct a type that is behaviorally equivalent to the given spec-
ification. Although this approach is technically always applicable by Theorem 1.7, storing both
representations side-by-side is not particularly ergonomic: in the operations provided by an imple-
mentation, we must duplicate inline the behavioral operations (using lists) and show that our im-
plementation coheres. Especially when working with an “unbiased” universal construction, such
as the behaviorally-free monoid, it is often more straightforward to verify the correctness of an
implementation on its own terms.

Remark 4.5. A similar issue of ergonomics occurs in phase distinctions for module systems [22]:
it is inconvenient to “physically” separate types and terms in modules, referred to as a phase sepa-
ration. Instead, it is preferable to intermix types and terms and isolate the static type components,
using a phase distinction as in the module calculus of Sterling and Harper [43]. y

We now present an alternative approach to remove this redundancy: using behavioral quotients
(as in Section 2.2), we may manually collapse our representation type to the specification when
inside the phase, blending the behavioral reference into the representation type by specifying
with modalities and quotients what data to behaviorally erase. Moreover, this collapsing can occur
locally, only involving a particular pattern of constructors rather than a recursive definition.

Example 4.6. Sequences may be implemented as trees, causing the constructors empty, append,
and singleton to incur zero cost. We construct a behaviorally quotiented type of binary trees that
collapses to lists under the phase. To accomplish this, we behaviorally quotient by identity and
associativity, as shown in Fig. 6.
The behavioral phase is intended to erase details only included for efficiency. Here, we erase

the tree shape in which the elements are stored within the behavioral phase, leaving over only
the elements in their given order. Now, when implementing an operation that cases on a tree of
type Tree �, we must verify that the code behaviorally respects removal of empty constructors
and tree rotations; this rules out functions that behaviorally reveal information about the chosen
tree representation of a sequence, even though the choice of representation may algorithmically
have an impact on the (cost of the) result. For example, by noninterference (Theorem 1.4), it is
impossible to write a function Tree � → N that behaviorally computes the height of the input tree.
It is important that the quotient only applies in the behavioral phase: if the tree quotient applied
more generally, we would lose the ability to write most algorithms, as the cost annotations on an
algorithm need not respect the quotients.
Implementing Seqence �, the type component is chosen to be as F(Tree �). This greatly sim-

plifies the implementation: rather than managing a list and a tree side-by-side and ensuring the
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treeSequence� : Seqence �

treeSequence� .� ≔ F(Tree �)
treeSequence� .empty ≔ ret(empty)
treeSequence� .append (ret(C1), ret(C2)) ≔ ret(node(C1, C2))
treeSequence� .singleton 4 ≔ ret(leaf(4))
treeSequence� .mapreduce "′ (ret(empty)) ≔ "′ .empty

treeSequence� .mapreduce "′ (ret(leaf 4)) ≔ "′ .singleton 4

treeSequence� .mapreduce "′ (ret(node(C1, C2))) ≔
"′ .append (treeSequence� .mapreduce"′ (ret(C1)), treeSequence� .mapreduce"′ (ret(C2)))

Fig. 7. Implementation of sequences using the binary tree type of Fig. 6.

coherence of operations with in-order traversal explicitly, as gluing would require, we simply op-
erate on trees. The list representation implicitly reveals itself in the behavioral phase due to the
quotient cases, which locally and unobtrusively ensures coherence with in-order traversal. We
show the implementation in Fig. 7, omitting proofs as usual. The proof that mapreduce respects
the behavioral quotient cases follows from the assumption that"′ is a behavioral monoid. y

Remark 4.7. In Semantics 3, the type Tree � may be interpreted as the presheaf

©
«

BinaryTree �

List �

inOrder

ª®®®
¬
,

where BinaryTree � is the usual type of binary trees with elements of type � at the leaves and the
abstraction function inOrder is the in-order traversal function. Notice that this function was never
given explicitly in the syntax, as Tree � was not constructed syntactically via gluing! However,
it appears semantically due to the behavioral quotient laws: as empty trees may be removed and
nodes may be freely associated (without loss of generality, to the right), the behavior of every
tree is equivalent to a right-spine, which is simply a list. The use of behavioral quotients here, as
opposed to gluing, streamlines programming with Tree �: functions implemented on this type
only need to respect the behavioral quotient laws, without need for a duplicated program in the
syntax and a proof of coherence by in-order traversal. y

Remark 4.8 (Views). From the perspective of Wadler [49], trees can be seen as a view of lists that
have improved efficiency [40]. Functions in and out are given to convert between the representa-
tions. It is remarked that the correct notion of equality must be carefully selected in order for these
functions to be inverses:

The correctness of the view depends on the equivalence between the various ways
of representing a join list; otherwise, the in and out functions would not be in-
verses. [49]

In our cost-aware setting we first observe that if the conversion functions in and out incur cost,
they will not generally be inverses, as the round-trip would incur nonzero cost. Moreover, when
considering efficiency as a first-class notion, it is clear that trees and lists should not always be
equivalent: an algorithm on a list may have differing efficiencies depending on the chosen as-
sociativity of its tree representative! The behavioral quotient recovers the appropriate notion of
equivalence, identifying trees containing the same data to make Tree � and List � behaviorally
equivalent. Here, the role of in is played by [◦ : Tree � → #(Tree �) = #(List �), converting
a tree to a list by implicitly forgetting the tree structure under the influence of the phase. The
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data IRBTree (2 :  Color) (= :  N) (� : V) : V where

empty : IRBTree ([•black) ([•zero) �
leaf : � → IRBTree ([•black) ([•zero) �
red : IRBTree ([•black) = � → IRBTree ([•black) = � → IRBTree ([•red) = �

black : IRBTree 21 = � → IRBTree 22 = � → IRBTree ([•black) (( suc) =) �
recolor : ¶beh →

∏
C1,C2 :IRBTree ∗ ∗ � red C1 C2 = black C1 C2

idl : ¶beh →
∏

C :IRBTree ∗ ∗ � black C empty = C

idr : ¶beh →
∏

C :IRBTree ∗ ∗ � black empty C = C

assoc : ¶beh →
∏

C1,C2,C3 :IRBTree ∗ ∗ � black (black C1 C2) C3 = black C1 (black C2 C3)

RBTree � ≔

∑
2: Color

∑
=: N IRBTree 2 = �

Fig. 8. Type representing invariant-preserving red-black trees, instrumented with the algorithmic modality

and quotients to behaviorally annihilate red-black coloring and tree shape.

inverse, out, is immediate in the behavioral phase, since [◦ is an algorithmic map (i.e., a behavioral
equivalence). y

Example 4.9. To improve efficiency of common operations implemented via mapreduce, a se-
quence may be implemented using a tree data structure equipped with some additional data to
main approximate balance, such as a red-black tree [21, 33].9 We may adapt the previous example
to encode the red-black invariants in a tree, taking care to erase behaviorally-irrelevant informa-
tion.
Following Weirich [50], we may define an indexed inductive type to enforce the red-black in-

variants, with indices for tree color and black-height. However, with indices of type Color and N,
naively grafting on the associativity and identity laws of Example 4.6 would not even well-typed:
since red-black trees must be approximately balanced, performing arbitrary tree rotations need not
lead to another invariant-satisfying red-black tree! To evade the red-black invariants, the key ma-
neuver is the placement of the color and black-height invariants under the algorithmic modality:
that way, in the behavioral phase, we are no longer obliged to maintain the red-black invariants.
Then, to avoid the term-level distinction between black and red nodes—which is only maintained
for algorithmic efficiency purposes, anyway—we behaviorally identify both colors of nodes, with
the constructor recolor. Finally, we may import the quotients of Example 4.6, using black as the
default node color, without loss of generality since red nodes may be behaviorally recolored. We
show this quotient inductive type in Fig. 8.
Beyond Tree �, we must now verify that code behaviorally respects recoloring. For example,

by noninterference (Theorem 1.4), it is impossible to write a function RBTree � → Color that
behaviorally computes the color of a given red-black tree. The Seqence � implementation is a
straightforward adaptation of Example 4.6 to account for node coloring, sketched in Fig. 9. The
subroutine used to implement the append operation,

join : F(RBTree �) ⊗ F(RBTree �) ⊸ F(RBTree �),

combines two red-black trees in an order-preserving and invariant-maintaining manner [8, 10]
(verified in Calf by Li et al. [27]). Importantly, join respects the given behavioral quotients, as it
only performs rotations and recolorings to produce a balanced tree. y

9Commonly, red-black trees store data at the red and black nodes, used to implement efficient binary search. However, we

choose to store data at leaves, simplifying our development involving monoids.
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rbtSequence� : Seqence �

rbtSequence� .� ≔ F(RBTree �)
rbtSequence� .empty ≔ ret([•black, [•zero, empty)
rbtSequence� .append ≔ join

rbtSequence� .singleton 4 ≔ ret([•black, [•zero, leaf 4)
rbtSequence� .mapreduce ≔ . . .

Fig. 9. Representative cases of the implementation of sequences using the red-black tree type of Fig. 8, adapt-

ing the implementation of Fig. 7 to balanced trees.

Remark 4.10 (Smart Constructors). For the verification of join, the essential lemma is that

join(ret(∗, ∗, C1), ret(∗, ∗, C2)) ⊜IRBTree ∗ ∗ � ret(black C1 C2).

In other words: behaviorally, join is just the black constructor. For this reason, we justify the termi-
nology that join is a smart constructor, informally defined to be a constructor that performs some
additional computation for the sake of efficiency only. We may treat this observation as a formal
definition: a smart constructor is a computation behaviorally equivalent to a constructor. y

Remark 4.11. Since the invariants and quotients are both relative to the behavioral phase, we
may extract different results using the various semantics. For example,

(1) in Semantics 1 the indices are erased, and the quotients always apply, recovering the math-
ematical free monoid (equivalent to List �); and

(2) in Semantics 2 the algorithmic modality on the indices disappears, and the quotient equa-
tions are vacuous, recovering the standard red-black tree type and algorithms.

The phasemediates between these semantics: codemust respect the possibility of collapsing to lists
under the phase, but this may uniformly be deleted in the semantics to recover the true code. y

4.4 Behavior refinements

Although the elimination form for sequences provides the facility to implement any algorithm,
there is no guarantee that the implementation will be efficient. Wemay refine the type Seqence �

with extra data, exporting additional operations with known behavior but lower cost, using the
fact that algorithmic types are closed under dependent sum [38, Example 1.8].

Lemma 4.12. If - : V and . : - → V are algorithmic, then
∑

G :- . (G) is algorithmic.

Letting- ≔ Seqence �, we may define algorithmic type families. that equip a sequence with
additional data.

Example 4.13. Using any " : Seqence �, computing the length of a given sequence can be
done using mapreduce:

length ≔ ".mapreduce (F(N), ret(0), add, const(ret(1)))

However, for many implementations of the sequence abstraction, this operation will take linear
time. We may refine sequences with an additional primitive operation that must behaviorally co-
here with the above implementation:

SeqenceExt(�) ≔
∑

" :Seqence �

(length : {".� ⊸ F(N) | ¶beh ↩→ length})

Even though this length function must behaviorally cohere with length (and could always be im-
plemented as exactly length), it may also be implemented using a more efficient method, such as
storing the length alongside the sequence for constant-time computation. y
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This strategy of exporting behaviorally-redundant information in an abstract data type is per-
vasive, as the algorithms able to be implemented via the elimination form are rarely the most
efficient. For example, the queue abstract data type can be thought of as a refinement of lists with
optimized operations for appending elements to the end and removing elements from the begin-
ning, and priority queues can be thought of as refining finite multisets with an optimized operation
for removing the least element according to some ordering.

5 CONCLUSION

In this paper we have shown how a synthetic phase distinction explains the key foundations for
modularity of algorithms and data structures in dependent type theory. While previous develop-
ments in Calf heavily emphasize the behavioral (i.e., open) modality, we bring algorithmic (i.e.,
closed-modal) types and the related fracture theorem to the forefront for the verification of al-
gorithms and data structures. Furthermore, we emphasize the importance of noninterference not
just for guaranteed separation of cost and behavior, but for separation of all private algorithmic
concerns, of which cost is a paradigmatic example.

5.1 Related work

We now characterize the relationship between our development and prior work, beyond the con-
nections that have been made throughout the text.

5.1.1 Synthetic phase distinctions. This work is fundamentally built upon the general framework
for modalities in homotopy type theory developed by Rijke et al. [38], making particular use of the
open and closed modalities associated with the proposition ¶beh, and set in the world of synthetic
phase distinctions, pioneered by Sterling and Harper [43]. Sterling and Harper [45] also apply the
techniques of synthetic phase distinctions to the domain of security and information flow, which
broadly aligns with the viewpoint that algorithmic data is private and behavioral data is public.
Recent work by Gratzer et al. [15] on abstraction in dependent type theory makes use of phases

to selectively reveal the implementation of definitions; within the phase for a particular definition,
the corresponding code is revealed. This technique makes use of extension types [36], similar to
the type we write {- | ¶beh ↩→ G0(_)} but equipped with a judgmental rather than typal equality.
The judgmental equality ensures a degree of faithfulness to the true source code that our story
intentionally avoids: although a private implementation should match its public specification, the
proof of this fact is rarely judgmental.
As regards the connections to cost analysis and Calf, the principal reference is Niu et al. [31] on

which the cost-oriented discussions in the present paper is based. Therein are provided a compre-
hensive comparison to related work on formalized cost analysis, all of which applies as well to the
present setting.

5.1.2 Ghost code. Our use of phases broadly parallels the technique of ghost code, where func-
tional, specification-level ghost code is maintained alongside (typically more efficient) “regular”
code. Prior accounts of ghost code have described noninterference of ghost code with regular
code, erasing ghost code to extract the efficient regular code [14]. Although our presentation sup-
ports the extraction of algorithmic code as an external notion, achieved by giving a semantics
where ¶beh is the false proposition as described in Semantics 2, the directionality of our phase is
dual: internally, we allow erasure of regular (algorithmic) code, leaving behind only behavior. This
ensures our opposite variety of noninterference, of regular code with ghost code (Theorem 1.4),
which appears here as the essence of modular verification.
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5.1.3 Representation independence and univalence. Angiuli et al. [4] tell a similar story for abstract
data types and representation types in a univalent setting. For example, in their presentation of
batched queues, the pair-of-lists type is quotiented by equivalence under revAppend, leading to a
type equivalent to the List N [4, §4.2]; this is similar to the behavioral quotients we considered in
Section 4.3, but implementing the queue example of Section 3. Furthermore, they also discuss trun-
cating a cost counter with the writer monad, propositionally truncating the cost model to identify
differing costs [4, Example 2.1]. These quotients are precisely what occurs in our development here
under the behavioral phase (or in Semantics 1 where ¶beh is true), so we may think of their work
as taking place in the behavioral phase, after all algorithmic details have already been redacted.
Thus, our story is pleasingly compatible: to recover the ability to extract code prior to redaction,
we simply condition the quotients on the behavioral phase.

5.1.4 Realignment and strict glue type. One role of univalence in this work is strictly equating
the glue type Glue(-◦, -•, U) to its behavioral component -◦ under the behavioral phase, so that
the internal representation of an abstract data type can be related with its specifications as in
Section 3.1. A similar result can be achieved in a non-univalent setting by considering the realign-
ment/strictification axiom [7, 34, 41, 42] that turns a partial isomorphism under a proposition into
a strict equality. Then a strict glue type [45, 51] can be defined by realigning the Σ type as we have
in Glue(-◦, -•, U).

5.1.5 Verification of data structures using abstraction functions. This work is far from the first to
verify data structures using abstraction functions; for example, Nipkow [30] has developed an ex-
tensive suite of data structures in Isabelle with verifications based on abstraction functions. Our
development with the behavioral phase can be viewed as a synthetic place in which to reconstruct
such analytic arguments: because every type contains an abstraction function, the language pro-
vides the capability to uniformly apply all the abstraction functions simultaneously, working in a
phase where all data is abstract.

5.1.6 Algebraic specification. In the discipline of algebraic specification abstract data types are
specified via equational properties on operations [39]. In general, it is not required that all op-
erations are uniquely defined by the equations. However, this strategy is often too conservative:
unless the properties exported are complete with respect to the implementation behavior, there
will be theorems that the client wishes to prove that are not consequences of the exported prop-
erties, violating the principle of modularity (Corollary 1.5). Moreover, from the perspective of the
implementer, it will be possible to provide an “incorrect” implementation if the requirements are
not strict enough. These issues are only exacerbated in the presence of complex language features,
such as effects and higher-order functions. To constitute an algorithmic type, an algebraic specifi-
cation must be behaviorally fully constrained.

5.2 Future work

Using the behavioral phase for modularity forces the programmer to carefully construct specifi-
cations that are algorithmic, and to carefully redact implementations such that the specification
is met. This process distills the essence of each algorithm and data structure, explicitly isolating
the choices being made for efficiency, as exemplified in our presentation of red-black trees (Exam-
ple 4.9). As a general next step, we hope to verify additional algorithms and data structures in this
style, as well.

5.2.1 Approximation algorithms. The foundational assumption surrounding the use of algorith-
mic types for specification is that a unique behavioral specification is known for the problem at
hand. In many cases this is true; however, some cases have more relaxed notions of correctness,
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such as approximation algorithms, algorithms with probabilistic correctness guarantees, or algo-
rithms with numerical error tolerances. Inspired by the work of Atkey [5, §4.3.2] on bounding
correctness, we hope to provide a synthetic account of approximation algorithms, generalizing
the theory presented here about behavioral singletons to behaviorally bounded types.

5.2.2 Cost refinements for abstract data types. In this work we primarily treat cost as a private,
algorithmic notion, briefly considering the refinement of specifications for algorithms with cost
considerations. We anticipate that this story can be expanded further, providing interfaces for
abstract data types that incorporate cost for a compositional story about the verification of cost
and behavior. The Decalf [20] type theory adds a judgmental notion of inequality to Calf that
compares cost; based on the work of Grodin and Harper [19], which uses (lax) homomorphisms
to bound the amortized cost of a data structure, we anticipate that the simple, cost-only notion of
inequality provided by Decalf can be generalized to describe homomorphisms, inspired by recent
developments in simplicial type theory [16, 17, 36].

DATA AVAILABILITY STATEMENT

Building on the work of Niu et al. [31] and Li et al. [27], the definitions and examples presented
have been partially mechanized in the Cubical Agda proof assistant [32].
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