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introduction Canonicity, categorically Synthetic Tait Computability

Metatheory for programming languages

• Canonicity

• Normalization

• Parametricity

• · · ·

Theorem (Canonicity)
Every closed term of type bool is (or evaluates to) either true or false.
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Tait’s Computability Method: Logical Relations

• Step 1: Define a computability predicate JAK by induction on
types.
◦ M ∈ JboolK ifM = yes orM = no.
◦ M ∈ JA→ BK if for allN ∈ JAK,MN ∈ JBK.
◦ M ∈ JA× BK if π1M ∈ JAK and π2M ∈ JBK.

• Step 2: Prove that all well-typed terms are computable.

See Bob’s 15-413/713 lecture notes for more details.
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Let’s do it differently today!
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I will use category theory ...

• A terminal object is an object that has a unique morphism
from every other object in the category, usually written as 1C.
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I will use dependent type theory ...

• AΠ type is a dependent function type (think “for all”
quantifier):

Example

Πn:Neven(n) + odd(n)

read as “for all n of typeN, n is either even or odd.”
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Amotivating example

Theorem
Every natural number is either even or odd, i.e., a term of type
Πn:Neven(n) + odd(n).

Proof
By induction on n.
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A categorical proof

Construct the following category C:

• Objects: terms of type ΣX:Type(1+ X → X)
i.e., a pair of (X, f : 1+ X → X).

• Morphisms (between objects (X, f ) and (Y , g)): a function
h : X → Y.
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What are some of the objects in C?

X : Type
X =N

f : 1+ X → X
f (inl ⋆) = zero
f (inr x) = succ x

In fact, this (N, f ) is the initial
object in C.

Y : Type
Y = Σn :N(even(n) + odd(n))

g : 1+ Y → Y
g(inl ⋆) = (zero, zeroIsEven)
g(inr (n, inl p)) =
(succ n, inr (evenOdd(p)))
g(inr (n, inr p)) =
(succ n, inl (oddEven(p)))
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What are some of themorphisms in C?

• There is a morphism from (Y , g) to (X, f ):
a function π1 : Σn :N(even(n) + odd(n)) →N by projecting
out the first component

• There is a morphism from (X, f ) to (Y , g):
a function ι :N → Σn :N(even(n) + odd(n))
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What does ι look like?

ι :N → Σn :N(even(n) + odd(n))

Maybe it is the case that ι(n) = (n, proof)?

But maybe it is some random function that doesn’t make sense?
e.g., ι(n) = (42, 42-isEven)?
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Fundamental theorem

ι :N → Σn :N(even(n) + odd(n))

(X, f ) (Y , g)

(X, f )

ι

π1

It must be the case that π1 ◦ ι = idN.

It must be the case that ι(n) = (n, proof).
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Our proof of canonicity would look much like this!
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Simply-typed lambda calculus

We present an equational theory of simply-typed lambda
calculus with only booleans and functions as a signature SIG.

record SIG where
field

tp : Type
tm : tp → Type

bool : tp
yes : tm bool
no : tm bool

arr : tp → tp → tp
lam : (tm(A) → tm(B)) → tm (arr A B)
app : tm (arr A B) → tm A→ tm B

arrβ : app (lam f ) x = f x
arrη : lam (app f ) = f
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Example terms

Example

lam (λx.x) : tm (arr bool bool)

which is traditionally written as λ(x : bool).x : bool → bool.

app (lam λ_.yes) no : tm bool

which is traditionally written as (λ_.yes) no : bool.
By using arrβ, we can show that the above term is equal to yes.
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SIG induces a category C

tm(bool) ΣA:tptm(A)

tm(arr bool bool) 1 tp tp → tp

tp → tp → tp

⌟

π1
app(−,no)

yes no

lam(λ_.yes)
bool

arr

arr



introduction Canonicity, categorically Synthetic Tait Computability

Some special morphisms

• Closed terms of type A are morphisms from 1 to tm(A).

yes : 1→ tm(bool)
no : 1→ tm(bool)
app(−, no) ◦ lam(λ_.yes) : 1→ tm(bool)

Theorem (Canonicity)
For anymorphism b : 1→ tm(bool), it must be the case that b = yes or
b = no.
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Category of Computability Structures

Construct a category E as follows:

• Objects: computability structures
(A ∈ C, S ∈ Set, f : S→ HomC(1,A)).

Think as: for each morphism e : 1→ A in C, we have a set Se of
proofs that e is computable at type A.

• Morphisms: a morphism b : A→ A ′ and a function h : S→ S ′

such that:

S S ′

Hom(1,A) Hom(1,A ′)

h

f f ′

Hom(1,b)
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What are some of the objects in E?

• tm(bool) = (tm(bool), {♠, ♣}, f )where:
f (♠) = yes
f (♣) = no

Define a functor F : C → E such that (in particular)
F(tm(bool)) = tm(bool).
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FundamentalTheorem of Logical Relations

• Objects in C: A.

• Objects in E: A = (A, S, f ).

C E

C

F

IdC

π1

By construction, it must be the case that π1 ◦ F = IdC.
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Canonicity

Proof
Suppose we have a morphism b : 1→ tm(bool) in C.

Compute F(b) : 1→ tm(bool).
This means that F(b) consists of a morphism b ′ : 1→ tm(bool)
and a function h : 1Set → {♠, ♣} such that:

1Set {♠, ♣}

1Set = Hom(1, 1) Hom(1, tm(bool))

h

! f

b ′
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Canonicity

Proof (Cont.)
Moreover, π1(F(b)) = b ′. By the fundamental theorem, b ′ = b.

1Set {♠, ♣}

1Set = Hom(1, 1) Hom(1, tm(bool))

h

! f

b

If h = ♠, then b = yes (because f (♠) = yes).
If h = ♣, then b = no (because f (♣) = no).
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What is this proof?

• A construction of a computability structure category E by
gluing syntax and semantics.
◦ Follows a general construction of Artin Gluing.

• A construction of a functor F : C → E.
◦ Tedious! A lot of conditions to check.
◦ F is a functorialmodel of the language.
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What is amodel?

Any implementationM : SIG is amodel of the language!

M.tp = Type
M.tm(A) = A

M.bool = 1+ 1
M.yes = inl ⋆
M.no = inr ⋆

M.arr A B = A→ B
M.lam f = f
M.app f x = f x
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Our Plan

• Suppose we have a modelM : SIG that corresponds to the
syntax.

• Construct a modelM : SIG that corresponds to the gluing of
syntax and semantics, such that

M M

M

bluify

id
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Piecing things together

C E

M M

C

M

F

IdC

π1
bluify

id
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Somemachinary in the dependent type theory

• A proposition syn : Prop.
◦ If syn holds, then we say that we are in the syntactic phase.

• Extension type: {A | syn ↪→ a0}where a0 : A.
◦ A term a : {A | syn ↪→ a0} is a term a : A such that under the
syntactic phase a = a0.
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New goal

ConstructM : {SIG | syn ↪→ M}.

M M : {SIG | syn ↪→ M}

M

bluify

id
enter syntactic phase
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ConstructingM

M.tp : {Type | syn ↪→ M.tp}
M.tm : {M.tp → Type | syn ↪→ M.tm}

M.bool : {M.tp | syn ↪→ M.bool}
M.yes : {M.tm(M.bool) | syn ↪→ M.yes}
M.no : {M.tm(M.bool) | syn ↪→ M.no}

· · ·
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ConstructingM

M.tp : {Type | syn ↪→ M.tp}
M.tp = ΣA:M.tp{Type | syn ↪→ M.tm(A)}

Think as: the computability structure ofM.tp is for each
syntactic type A, a collection of terms of that type and proofs
that those terms are computable.

Check: under the syntactic phase (assuming syn),

M.tp
=ΣA:M.tp{Type | syn ↪→ M.tm(A)}
∼=ΣA:M.tp1
∼=M.tp
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ConstructingM

M.tp : {Type | syn ↪→ M.tp}
M.tp = ΣA:M.tp{Type | syn ↪→ M.tm(A)}

M.tm : {M.tp → Type | syn ↪→ M.tm}

M.tm(A) = π2A
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ConstructingM

M.tp : {Type | syn ↪→ M.tp}
M.tp = ΣA:M.tp{Type | syn ↪→ M.tm(A)}

M.bool : {M.tp | syn ↪→ M.bool}
M.bool = (M.bool, Σb:tm(bool)(b = M.yes) + (b = M.no))1

M.yes : {M.tm(M.bool) | syn ↪→ M.yes}
M.yes = (M.yes, inl(✓))

1Well, I lied slightly.



introduction Canonicity, categorically Synthetic Tait Computability

ConstructingM

Everything else is just a routine programming exercise in a
dependently typed language.

In almost all cases, there is only one way that makes the
type-checker happy.

Just like in traditional Logical Relations, there is no creativity
beyond the base types.
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And that is Synthetic Tait’s Computability!
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What is this proof?

• A programming exercise to constructM : {SIG | syn ↪→ M} in
a dependently typed language.

• Everything else can be black-boxed if you don’t want to deal
with category theory.
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Conclusion

• Syntax and semantics of a programming language displays a
phase distinction that can be manipulated synthetically.

• Synthetic Tait Computability exploits this by gluing syntax
and semantics together.

• Proving meta-theoretic properties by Logical Relations can be
reduced to a programming exercise in a dependently typed
language.
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