How to (Re)Invent Synthetic Tait Computability

PLunch February 19, 2025

Runming Li

Synthetic Tait Computability 00000000000

Metatheory for programming languages

- Canonicity
- Normalization
- Parametricity
- • •

Synthetic Tait Computability 00000000000

Metatheory for programming languages

- Canonicity
- Normalization
- Parametricity
- • •

Theorem (Canonicity)

Every closed term of type bool *is (or evaluates to) either* true *or* false.

CANONICITY, CATEGORICALLY

Synthetic Tait Computability 0000000000

Tait's Computability Method: Logical Relations

Tait's Computability Method: Logical Relations

- Step 1: Define a **computability** predicate [[A]] by induction on types.
 - $M \in \llbracket \text{bool} \rrbracket$ if M = yes or M = no.

Tait's Computability Method: Logical Relations

- Step 1: Define a **computability** predicate [[A]] by induction on types.
 - $M \in \llbracket \text{bool} \rrbracket$ if M = yes or M = no.
 - $\circ \ M \in \llbracket A \to B \rrbracket \text{ if for all } N \in \llbracket A \rrbracket, M N \in \llbracket B \rrbracket.$
 - $\circ \ M \in \llbracket A \times B \rrbracket \text{ if } \pi_1 M \in \llbracket A \rrbracket \text{ and } \pi_2 M \in \llbracket B \rrbracket.$

Tait's Computability Method: Logical Relations

- Step 1: Define a **computability** predicate [[A]] by induction on types.
 - $M \in \llbracket \mathsf{bool} \rrbracket$ if $M = \mathsf{yes}$ or $M = \mathsf{no}$.
 - $\circ \ M \in \llbracket A \to B \rrbracket \text{ if for all } N \in \llbracket A \rrbracket, M N \in \llbracket B \rrbracket.$
 - $\circ \ M \in \llbracket A \times B \rrbracket \text{ if } \pi_1 M \in \llbracket A \rrbracket \text{ and } \pi_2 M \in \llbracket B \rrbracket.$
- Step 2: Prove that all well-typed terms are **computable**.

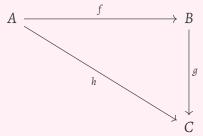
See Bob's 15-413/713 lecture notes for more details.

Let's do it differently today!

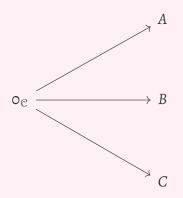
Canonicity, categorically 00000000000000 Synthetic Tait Computability 00000000000

I will use category theory ...

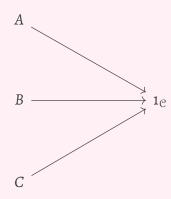
• A **category** is a collection of **objects** and **morphisms** between objects.



• An **initial object** is an object that has a unique morphism to every other object in the category.



• A **terminal object** is an object that has a unique morphism from every other object in the category, usually written as 1_C.



• A **functor** is a "function" between two categories.

- A **functor** is a "function" between two categories.
- A Hom(A, B) is the set of morphisms from object A to object B.

I will use dependent type theory ...

 A Π type is a dependent function type (think "for all" quantifier):

I will use dependent type theory ...

 A Π type is a dependent function type (think "for all" quantifier):

Example

```
\Pi_{n:\mathbb{N}}\mathsf{even}(n) + \mathsf{odd}(n)
```

read as "for all *n* of type \mathbb{N} , *n* is either even or odd."

Canonicity, categorically

Synthetic Tait Computability 00000000000

I will use dependent type theory ...

• A Σ type is a dependent pair type (think existential quantifier):

I will use dependent type theory ...

• A Σ type is a dependent pair type (think existential quantifier): Example

$$\Sigma_{n:\mathbb{N}}(n=42)$$

read as "there exists an *n* of type \mathbb{N} such that n = 42."

A motivating example

Theorem

Every natural number is either even or odd, i.e., a term of type $\Pi_{n:\mathbb{N}}$ even(n) + odd(n).

A motivating example

Theorem

Every natural number is either even or odd, i.e., a term of type $\Pi_{n:\mathbb{N}}$ even(n) + odd(n).

Proof

By induction on *n*.

A categorical proof

Construct the following category \mathbb{C} :

• Objects: terms of type $\Sigma_{X:Type}(1 + X \rightarrow X)$ *i.e.*, a pair of $(X, f: 1 + X \rightarrow X)$.

A categorical proof

Construct the following category \mathbb{C} :

- Objects: terms of type $\Sigma_{X:Type}(1 + X \rightarrow X)$ *i.e.*, a pair of $(X, f: 1 + X \rightarrow X)$.
- Morphisms (between objects (X, f) and (Y, g)): a function $h : X \to Y$.

CANONICITY, CATEGORICALLY

Synthetic Tait Computability 00000000000

What are some of the objects in C?

Synthetic Tait Computability 00000000000

What are some of the objects in C?

$$X$$
: Type
 $X = \mathbb{N}$

$$f: 1 + X \to X$$

$$f(inl \star) = zero$$

$$f(inr x) = succ x$$

Synthetic Tait Computability 00000000000

What are some of the objects in C?

$$X$$
: Type
 $X = \mathbb{N}$

$$f: 1 + X \to X$$

$$f(inl \star) = zero$$

$$f(inr x) = succ x$$

In fact, this (\mathbb{N}, f) is the initial object in \mathbb{C} .

What are some of the objects in C?

$$X$$
: Type
 $X = \mathbb{N}$

$$f: 1 + X \to X$$

$$f(inl \star) = zero$$

$$f(inr x) = succ x$$

In fact, this (\mathbb{N}, f) is the initial object in \mathbb{C} .

Y : Type $Y = \Sigma n : \mathbb{N}(\operatorname{even}(n) + \operatorname{odd}(n))$

 $g: 1 + Y \rightarrow Y$ $g(inl \star) = (zero, zerolsEven)$ g(inr (n, inl p)) = (succ n, inr (evenOdd(p))) g(inr (n, inr p)) =(succ n, inl (oddEven(p))) CANONICITY, CATEGORICALLY

Synthetic Tait Computability 00000000000

What are some of the morphisms in \mathbb{C} ?

What are some of the morphisms in C?

 There is a morphism from (Y, g) to (X, f): a function π₁ : Σn : ℕ(even(n) + odd(n)) → ℕ by projecting out the first component

What are some of the morphisms in \mathbb{C} ?

- There is a morphism from (Y, g) to (X, f):
 a function π₁ : Σn : ℕ(even(n) + odd(n)) → ℕ by projecting out the first component
- There is a morphism from (X, f) to (Y, g): a function $\iota : \mathbb{N} \to \Sigma n : \mathbb{N}(\text{even}(n) + \text{odd}(n))$

Synthetic Tait Computability 00000000000

What does ι look like?

$\iota: \mathbb{N} \to \Sigma n: \mathbb{N}(\operatorname{even}(n) + \operatorname{odd}(n))$

What does ι look like?

$$\iota: \mathbb{N} \to \Sigma n: \mathbb{N}(\operatorname{even}(n) + \operatorname{odd}(n))$$

Maybe it is the case that $\iota(n) = (n, \text{ proof})$?

What does ι look like?

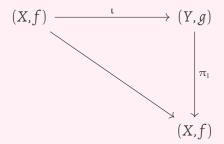
$$\iota: \mathbb{N} \to \Sigma n: \mathbb{N}(\operatorname{even}(n) + \operatorname{odd}(n))$$

Maybe it is the case that $\iota(n) = (n, \text{proof})$?

But maybe it is some random function that doesn't make sense? e.g., $\iota(n) = (42, 42\text{-isEven})$?

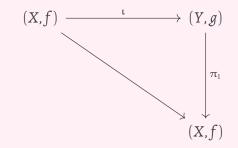
Fundamental theorem

$$\iota: \mathbb{N} \to \Sigma n: \mathbb{N}(\operatorname{even}(n) + \operatorname{odd}(n))$$



Fundamental theorem

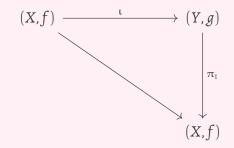
$$\iota: \mathbb{N} \to \Sigma n: \mathbb{N}(\operatorname{even}(n) + \operatorname{odd}(n))$$



It must be the case that $\pi_1 \circ \iota = id_{\mathbb{N}}$.

Fundamental theorem

$$\iota: \mathbb{N} \to \Sigma n: \mathbb{N}(\operatorname{even}(n) + \operatorname{odd}(n))$$



It must be the case that $\pi_{\iota} \circ \iota = \mathsf{id}_{\mathbb{N}}$.

It must be the case that $\iota(n) = (n, \text{proof})$.

Our proof of **canonicity** would look much like this!

Simply-typed lambda calculus

We present an **equational theory** of simply-typed lambda calculus with only booleans and functions as a signature SIG.

Simply-typed lambda calculus

We present an **equational theory** of simply-typed lambda calculus with only booleans and functions as a signature SIG.

record SIG where

field

tp : **Type** tm : tp \rightarrow **Type**

bool : tp yes : tm bool no : tm bool

Simply-typed lambda calculus

We present an **equational theory** of simply-typed lambda calculus with only booleans and functions as a signature SIG.

record SIG where

no : tm bool

field $\operatorname{arr}: \operatorname{tp} \to \operatorname{tp} \to \operatorname{tp}$ $\operatorname{tp}: \mathbf{Type}$ $\operatorname{lam}: (\operatorname{tm}(A) \to \operatorname{tm}(B)) \to \operatorname{tm}(\operatorname{arr} A B)$ $\operatorname{tm}: \operatorname{tp} \to \mathbf{Type}$ $\operatorname{app}: \operatorname{tm}(\operatorname{arr} A B) \to \operatorname{tm} A \to \operatorname{tm} B$ bool: tp $\operatorname{arr}_{\beta}: \operatorname{app}(\operatorname{lam} f) x = f x$ yes: tm bool $\operatorname{arr}_{n}: \operatorname{lam}(\operatorname{app} f) = f$

Example terms

Example

$lam(\lambda x.x)$: tm (arr bool bool)

which is traditionally written as $\lambda(x : bool).x : bool \rightarrow bool$.

Example terms

Example

$$\begin{split} & \text{lam} \ (\lambda x.x): \text{tm} \ (\text{arr bool bool}) \\ & \text{which is traditionally written as} \ \lambda(x:\text{bool}).x:\text{bool} \rightarrow \text{bool}. \\ & \text{app} \ (\text{lam} \ \lambda_.\text{yes}) \ \text{no}: \text{tm bool} \end{split}$$

which is traditionally written as $(\lambda_.yes)$ no : bool.

Example terms

Example

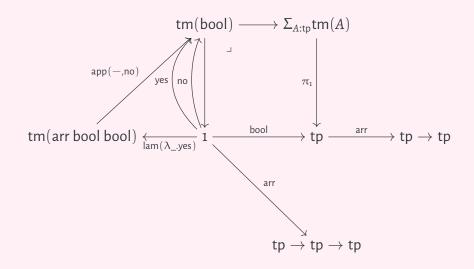
```
lam(\lambda x.x) : tm (arr bool bool)
```

which is traditionally written as $\lambda(x : bool).x : bool \rightarrow bool$.

 $app \; (lam \; \lambda_.yes) \; no: tm \; bool$

which is traditionally written as $(\lambda_{.}yes)$ no : bool. By using arr_{β}, we can show that the above term is equal to yes.

IG induces a category ${\mathbb C}$



Some special morphisms

• Closed terms of type A are morphisms from 1 to tm(A).

yes : $1 \rightarrow tm(bool)$ no : $1 \rightarrow tm(bool)$ app $(-, no) \circ lam(\lambda_.yes) : 1 \rightarrow tm(bool)$

Some special morphisms

• Closed terms of type A are morphisms from 1 to tm(A).

yes : $1 \rightarrow tm(bool)$ no : $1 \rightarrow tm(bool)$ app $(-, no) \circ lam(\lambda_.yes) : 1 \rightarrow tm(bool)$

Theorem (Canonicity)

For any morphism $b : 1 \rightarrow tm(bool)$, it must be the case that b = yes or b = no.

Category of Computability Structures

Construct a category \mathcal{E} as follows:

• Objects: computability structures $(A \in \mathcal{C}, S \in \mathbf{Set}, f : S \to \operatorname{Hom}_{\mathcal{C}}(\mathbf{1}, A)).$

Category of Computability Structures

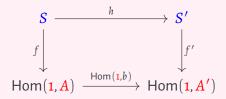
Construct a category $\boldsymbol{\mathcal{E}}$ as follows:

• Objects: computability structures $(A \in \mathbb{C}, S \in \mathbf{Set}, f : S \to \operatorname{Hom}_{\mathbb{C}}(\mathbf{1}, A)).$ Think as: for each morphism $e : \mathbf{1} \to A$ in \mathbb{C} , we have a set S_e of proofs that e is computable at type A.

Category of Computability Structures

Construct a category $\boldsymbol{\mathcal{E}}$ as follows:

- Objects: computability structures $(A \in \mathbb{C}, S \in \mathbf{Set}, f : S \to \operatorname{Hom}_{\mathbb{C}}(\mathbf{1}, A)).$ Think as: for each morphism $e : \mathbf{1} \to A$ in \mathbb{C} , we have a set S_e of proofs that e is computable at type A.
- Morphisms: a morphism $b : \mathbf{A} \to \mathbf{A'}$ and a function $h : \mathbf{S} \to \mathbf{S'}$ such that:



What are some of the objects in \mathcal{E} ?

• $\operatorname{tm}(\operatorname{bool}) = (\operatorname{tm}(\operatorname{bool}), \{\bigstar, \clubsuit\}, f)$ where: $f(\bigstar) = \operatorname{yes} f(\bigstar) = \operatorname{no}$

What are some of the objects in \mathcal{E} ?

• $\operatorname{tm}(\operatorname{bool}) = (\operatorname{tm}(\operatorname{bool}), \{\bigstar, \clubsuit\}, f)$ where: $f(\bigstar) = \operatorname{yes} f(\clubsuit) = \operatorname{no}$

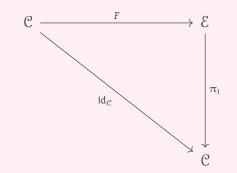
Define a functor $F : \mathbb{C} \to \mathcal{E}$ such that (in particular) $F(\mathsf{tm}(\mathsf{bool})) = \mathsf{tm}(\mathsf{bool}).$

Fundamental Theorem of Logical Relations

- Objects in C: A.
- Objects in \mathcal{E} : $\mathbf{A} = (\mathbf{A}, \mathbf{S}, f)$.

Fundamental Theorem of Logical Relations

- Objects in C: A.
- Objects in \mathcal{E} : $\mathbf{A} = (\mathbf{A}, \mathbf{S}, f)$.



By construction, it must be the case that $\pi_1 \circ F = Id_{\mathcal{C}}$.

Proof

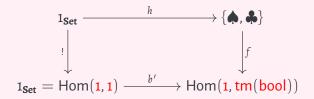
Suppose we have a morphism $b : \mathbf{1} \to \mathsf{tm}(\mathsf{bool})$ in \mathcal{C} .

Proof

Suppose we have a morphism $b : \mathbf{1} \to \mathsf{tm}(\mathsf{bool})$ in \mathcal{C} . Compute $F(b) : \mathbf{1} \to \mathsf{tm}(\mathsf{bool})$.

Proof

Suppose we have a morphism $b : \mathbf{1} \to \mathsf{tm}(\mathsf{bool})$ in C. Compute $F(b) : \mathbf{1} \to \mathsf{tm}(\mathsf{bool})$. This means that F(b) consists of a morphism $b' : \mathbf{1} \to \mathsf{tm}(\mathsf{bool})$ and a function $h : \mathbf{1}_{\mathsf{set}} \to \{\diamondsuit, \clubsuit\}$ such that:

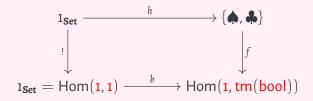


Proof(Cont.)

Moreover, $\pi_1(F(b)) = b'$. By the fundamental theorem, b' = b.

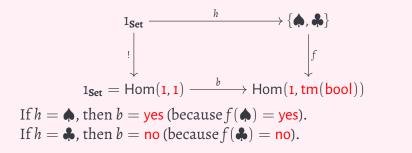
Proof(Cont.)

Moreover, $\pi_1(F(b)) = b'$. By the fundamental theorem, b' = b.



Proof(Cont.)

Moreover, $\pi_1(F(b)) = b'$. By the fundamental theorem, b' = b.



• A construction of a computability structure category \mathcal{E} by gluing syntax and semantics.

- A construction of a computability structure category \mathcal{E} by gluing syntax and semantics.
 - Follows a general construction of **Artin Gluing**.

- A construction of a computability structure category \mathcal{E} by gluing syntax and semantics.
 - Follows a general construction of **Artin Gluing**.
- A construction of a functor $F : \mathbb{C} \to \mathcal{E}$.

- A construction of a computability structure category \mathcal{E} by gluing syntax and semantics.
 - Follows a general construction of **Artin Gluing**.
- A construction of a functor $F : \mathbb{C} \to \mathcal{E}$.
 - Tedious! A lot of conditions to check.
 - *F* is a **functorial model** of the language.

What is a model?

What is a model?

Any implementation M : **SIG** is a **model** of the language!

What is a model?

Any implementation M : **SIG** is a **model** of the language!

M.tp = TypeM.tm(A) = A

M.bool = 1 + 1M.yes = inl * M.no = inr *

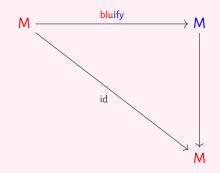
M.arr $A B = A \rightarrow B$ M.lam f = fM.app f x = f x

Our Plan

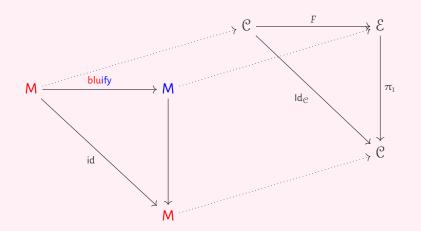
- Suppose we have a model M : SIG that corresponds to the syntax.
- Construct a model M : SIG that corresponds to the gluing of syntax and semantics, such that

Our Plan

- Suppose we have a model M : SIG that corresponds to the syntax.
- Construct a model M : SIG that corresponds to the gluing of syntax and semantics, such that



Piecing things together



Some machinary in the dependent type theory

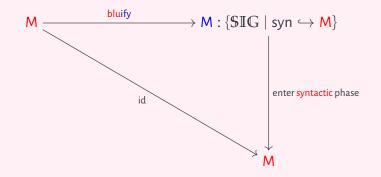
- A proposition syn : Prop.
 - If syn holds, then we say that we are in the **syntactic phase**.

Some machinary in the dependent type theory

- A proposition syn : Prop.
 - If syn holds, then we say that we are in the **syntactic phase**.
- Extension type: $\{A \mid syn \hookrightarrow a_o\}$ where $a_o : A$.
 - A term $a : \{A \mid syn \hookrightarrow a_0\}$ is a term a : A such that under the **syntactic phase** $a = a_0$.

New goal

Construct $M : \{SIG \mid syn \hookrightarrow M\}$.



. . .

 $\begin{array}{l} \mathsf{M.tp}: \{ \textbf{Type} \mid \mathsf{syn} \hookrightarrow \textbf{M.tp} \} \\ \mathsf{M.tm}: \{ \mathsf{M.tp} \to \textbf{Type} \mid \mathsf{syn} \hookrightarrow \textbf{M.tm} \} \end{array}$

 $\begin{array}{l} \mathsf{M}.\mathsf{bool}: \{\mathsf{M}.\mathsf{tp} \mid \mathsf{syn} \hookrightarrow \mathsf{M}.\mathsf{bool}\} \\ \mathsf{M}.\mathsf{yes}: \{\mathsf{M}.\mathsf{tm}(\mathsf{M}.\mathsf{bool}) \mid \mathsf{syn} \hookrightarrow \mathsf{M}.\mathsf{yes}\} \\ \mathsf{M}.\mathsf{no}: \{\mathsf{M}.\mathsf{tm}(\mathsf{M}.\mathsf{bool}) \mid \mathsf{syn} \hookrightarrow \mathsf{M}.\mathsf{no}\} \end{array}$

 $\begin{aligned} \mathsf{M}.\mathsf{tp} &: \{\mathbf{Type} \mid \mathsf{syn} \hookrightarrow \mathsf{M}.\mathsf{tp}\} \\ \mathsf{M}.\mathsf{tp} &= \Sigma_{A:\mathsf{M}.\mathsf{tp}}\{\mathbf{Type} \mid \mathsf{syn} \hookrightarrow \mathsf{M}.\mathsf{tm}(A)\} \end{aligned}$

 $M.tp : {$ **Type** $| syn \hookrightarrow M.tp}$ $M.tp = \Sigma_{A:M.tp}{$ **Type** $| syn \hookrightarrow M.tm}(A)}$

Think as: the computability structure of M.tp is for each syntactic type A, a collection of terms of that type and proofs that those terms are computable.

 $M.tp : {$ **Type** $| syn \hookrightarrow M.tp}$ $M.tp = \Sigma_{A:M.tp}{$ **Type** $| syn \hookrightarrow M.tm}(A)}$

Think as: the computability structure of M.tp is for each syntactic type *A*, a collection of terms of that type and proofs that those terms are computable.

Check: under the syntactic phase (assuming syn),

 $M.tp = \Sigma_{A:M.tp} \{ Type \mid syn \hookrightarrow M.tm(A) \}$ $\cong \Sigma_{A:M.tp} 1$ $\cong M.tp$

$$\begin{split} &\mathsf{M}.\mathsf{tp}:\{\mathbf{Type}\mid\mathsf{syn}\hookrightarrow\mathsf{M}.\mathsf{tp}\}\\ &\mathsf{M}.\mathsf{tp}=\Sigma_{A:\mathsf{M}.\mathsf{tp}}\{\mathbf{Type}\mid\mathsf{syn}\hookrightarrow\mathsf{M}.\mathsf{tm}(A)\} \end{split}$$

 $\begin{array}{l} \mathsf{M}.\mathsf{tm}: \{\mathsf{M}.\mathsf{tp} \rightarrow \mathbf{Type} \mid \mathsf{syn} \hookrightarrow \mathsf{M}.\mathsf{tm}\} \\ \mathsf{M}.\mathsf{tm}(A) = \pi_{\mathsf{z}}A \end{array}$

$$\begin{split} \mathsf{M}.\mathsf{tp} &: \{\mathbf{Type} \mid \mathsf{syn} \hookrightarrow \mathsf{M}.\mathsf{tp}\}\\ \mathsf{M}.\mathsf{tp} &= \Sigma_{A:\mathsf{M}.\mathsf{tp}}\{\mathbf{Type} \mid \mathsf{syn} \hookrightarrow \mathsf{M}.\mathsf{tm}(A)\} \end{split}$$

$$\begin{split} &\mathsf{M}.\mathsf{bool}: \{\mathsf{M}.\mathsf{tp} \mid \mathsf{syn} \hookrightarrow \mathsf{M}.\mathsf{bool}\}\\ &\mathsf{M}.\mathsf{bool} = (\mathsf{M}.\mathsf{bool}, \Sigma_{b:\mathsf{tm}(\mathsf{bool})}(b = \mathsf{M}.\mathsf{yes}) + (b = \mathsf{M}.\mathsf{no}))^{\scriptscriptstyle 1} \end{split}$$

 $\begin{aligned} & \text{M.yes} : \{\text{M.tm}(\text{M.bool}) \mid \text{syn} \hookrightarrow \text{M.yes} \} \\ & \text{M.yes} = (\text{M.yes}, \text{inl}(\checkmark)) \end{aligned}$

¹Well, I lied slightly.

Everything else is just a routine programming exercise in a dependently typed language.

In almost all cases, there is only one way that makes the type-checker happy.

Everything else is just a routine programming exercise in a dependently typed language.

In almost all cases, there is only one way that makes the type-checker happy.

Just like in traditional Logical Relations, there is no creativity beyond the base types.

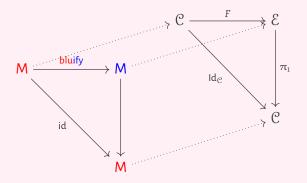
And that is Synthetic Tait's Computability!

Synthetic Tait Computability 000000000000

What is this proof?

What is this proof?

- A programming exercise to construct M : {SIG | syn → M} in a dependently typed language.
- Everything else can be black-boxed if you don't want to deal with category theory.



:

Synthetic Tait Computability 0000000000

Synthetic Tait Computability in Real World

Parametricity for an ML module calculus **Normalization** for Cartesian Cubical Type Theory **Normalization** for a multimodal type theory Sterling & Harper Sterling & Angiuli Gratzer

:

Synthetic Tait Computability 0000000000

Synthetic Tait Computability in Real World

Parametricity for an ML module calculus **Normalization** for Cartesian Cubical Type Theory **Normalization** for a multimodal type theory Sterling & Harper Sterling & Angiuli Gratzer

Canonicity for Cost-Aware Logical Framework

Conclusion

- Syntax and semantics of a programming language displays a **phase distinction** that can be manipulated synthetically.
- **Synthetic Tait Computability** exploits this by **gluing syntax** and **semantics** together.
- Proving meta-theoretic properties by Logical Relations can be reduced to a programming exercise in a dependently typed language.