
How to (Re)Invent
Synthetic Tait Computability
PLunch
February 19, 2025

Runming Li



introduction Canonicity, categorically Synthetic Tait Computability

Metatheory for programming languages

• Canonicity

• Normalization

• Parametricity

• · · ·

Theorem (Canonicity)
Every closed term of type bool is (or evaluates to) either true or false.



introduction Canonicity, categorically Synthetic Tait Computability

Metatheory for programming languages

• Canonicity

• Normalization

• Parametricity

• · · ·

Theorem (Canonicity)
Every closed term of type bool is (or evaluates to) either true or false.



introduction Canonicity, categorically Synthetic Tait Computability

Tait’s Computability Method: Logical Relations

• Step 1: Define a computability predicate JAK by induction on
types.
◦ M ∈ JboolK ifM = yes orM = no.
◦ M ∈ JA→ BK if for allN ∈ JAK,MN ∈ JBK.
◦ M ∈ JA× BK if π1M ∈ JAK and π2M ∈ JBK.

• Step 2: Prove that all well-typed terms are computable.

See Bob’s 15-413/713 lecture notes for more details.



introduction Canonicity, categorically Synthetic Tait Computability

Tait’s Computability Method: Logical Relations

• Step 1: Define a computability predicate JAK by induction on
types.
◦ M ∈ JboolK ifM = yes orM = no.

◦ M ∈ JA→ BK if for allN ∈ JAK,MN ∈ JBK.
◦ M ∈ JA× BK if π1M ∈ JAK and π2M ∈ JBK.

• Step 2: Prove that all well-typed terms are computable.

See Bob’s 15-413/713 lecture notes for more details.



introduction Canonicity, categorically Synthetic Tait Computability

Tait’s Computability Method: Logical Relations

• Step 1: Define a computability predicate JAK by induction on
types.
◦ M ∈ JboolK ifM = yes orM = no.
◦ M ∈ JA→ BK if for allN ∈ JAK,MN ∈ JBK.
◦ M ∈ JA× BK if π1M ∈ JAK and π2M ∈ JBK.

• Step 2: Prove that all well-typed terms are computable.

See Bob’s 15-413/713 lecture notes for more details.



introduction Canonicity, categorically Synthetic Tait Computability

Tait’s Computability Method: Logical Relations

• Step 1: Define a computability predicate JAK by induction on
types.
◦ M ∈ JboolK ifM = yes orM = no.
◦ M ∈ JA→ BK if for allN ∈ JAK,MN ∈ JBK.
◦ M ∈ JA× BK if π1M ∈ JAK and π2M ∈ JBK.

• Step 2: Prove that all well-typed terms are computable.

See Bob’s 15-413/713 lecture notes for more details.



introduction Canonicity, categorically Synthetic Tait Computability

Let’s do it differently today!



introduction Canonicity, categorically Synthetic Tait Computability

I will use category theory ...

• A category is a collection of objects andmorphisms between
objects.

A B

C

f

h
g



introduction Canonicity, categorically Synthetic Tait Computability

I will use category theory ...

• A category is a collection of objects andmorphisms between
objects.

A B

C

f

h
g



introduction Canonicity, categorically Synthetic Tait Computability

I will use category theory ...
• An initial object is an object that has a unique morphism to
every other object in the category.

A

0C B

C



introduction Canonicity, categorically Synthetic Tait Computability

I will use category theory ...

• A terminal object is an object that has a unique morphism
from every other object in the category, usually written as 1C.

A

B 1C

C



introduction Canonicity, categorically Synthetic Tait Computability

I will use category theory ...

• A functor is a “function” between two categories.

• AHom(A,B) is the set of morphisms from object A to object B.



introduction Canonicity, categorically Synthetic Tait Computability

I will use category theory ...

• A functor is a “function” between two categories.

• AHom(A,B) is the set of morphisms from object A to object B.



introduction Canonicity, categorically Synthetic Tait Computability

I will use dependent type theory ...

• AΠ type is a dependent function type (think “for all”
quantifier):

Example

Πn:Neven(n) + odd(n)

read as “for all n of typeN, n is either even or odd.”



introduction Canonicity, categorically Synthetic Tait Computability

I will use dependent type theory ...

• AΠ type is a dependent function type (think “for all”
quantifier):

Example

Πn:Neven(n) + odd(n)

read as “for all n of typeN, n is either even or odd.”



introduction Canonicity, categorically Synthetic Tait Computability

I will use dependent type theory ...

• A Σ type is a dependent pair type (think existential quantifier):

Example

Σn:N(n = 42)

read as “there exists an n of typeN such that n = 42.”



introduction Canonicity, categorically Synthetic Tait Computability

I will use dependent type theory ...

• A Σ type is a dependent pair type (think existential quantifier):

Example

Σn:N(n = 42)

read as “there exists an n of typeN such that n = 42.”



introduction Canonicity, categorically Synthetic Tait Computability

Amotivating example

Theorem
Every natural number is either even or odd, i.e., a term of type
Πn:Neven(n) + odd(n).

Proof
By induction on n.



introduction Canonicity, categorically Synthetic Tait Computability

Amotivating example

Theorem
Every natural number is either even or odd, i.e., a term of type
Πn:Neven(n) + odd(n).

Proof
By induction on n.



introduction Canonicity, categorically Synthetic Tait Computability

A categorical proof

Construct the following category C:

• Objects: terms of type ΣX:Type(1+ X → X)
i.e., a pair of (X, f : 1+ X → X).

• Morphisms (between objects (X, f ) and (Y , g)): a function
h : X → Y.



introduction Canonicity, categorically Synthetic Tait Computability

A categorical proof

Construct the following category C:

• Objects: terms of type ΣX:Type(1+ X → X)
i.e., a pair of (X, f : 1+ X → X).

• Morphisms (between objects (X, f ) and (Y , g)): a function
h : X → Y.



introduction Canonicity, categorically Synthetic Tait Computability

What are some of the objects in C?

X : Type
X =N

f : 1+ X → X
f (inl ⋆) = zero
f (inr x) = succ x

In fact, this (N, f ) is the initial
object in C.

Y : Type
Y = Σn :N(even(n) + odd(n))

g : 1+ Y → Y
g(inl ⋆) = (zero, zeroIsEven)
g(inr (n, inl p)) =
(succ n, inr (evenOdd(p)))
g(inr (n, inr p)) =
(succ n, inl (oddEven(p)))



introduction Canonicity, categorically Synthetic Tait Computability

What are some of the objects in C?

X : Type
X =N

f : 1+ X → X
f (inl ⋆) = zero
f (inr x) = succ x

In fact, this (N, f ) is the initial
object in C.

Y : Type
Y = Σn :N(even(n) + odd(n))

g : 1+ Y → Y
g(inl ⋆) = (zero, zeroIsEven)
g(inr (n, inl p)) =
(succ n, inr (evenOdd(p)))
g(inr (n, inr p)) =
(succ n, inl (oddEven(p)))



introduction Canonicity, categorically Synthetic Tait Computability

What are some of the objects in C?

X : Type
X =N

f : 1+ X → X
f (inl ⋆) = zero
f (inr x) = succ x

In fact, this (N, f ) is the initial
object in C.

Y : Type
Y = Σn :N(even(n) + odd(n))

g : 1+ Y → Y
g(inl ⋆) = (zero, zeroIsEven)
g(inr (n, inl p)) =
(succ n, inr (evenOdd(p)))
g(inr (n, inr p)) =
(succ n, inl (oddEven(p)))



introduction Canonicity, categorically Synthetic Tait Computability

What are some of the objects in C?

X : Type
X =N

f : 1+ X → X
f (inl ⋆) = zero
f (inr x) = succ x

In fact, this (N, f ) is the initial
object in C.

Y : Type
Y = Σn :N(even(n) + odd(n))

g : 1+ Y → Y
g(inl ⋆) = (zero, zeroIsEven)
g(inr (n, inl p)) =
(succ n, inr (evenOdd(p)))
g(inr (n, inr p)) =
(succ n, inl (oddEven(p)))



introduction Canonicity, categorically Synthetic Tait Computability

What are some of themorphisms in C?

• There is a morphism from (Y , g) to (X, f ):
a function π1 : Σn :N(even(n) + odd(n)) →N by projecting
out the first component

• There is a morphism from (X, f ) to (Y , g):
a function ι :N → Σn :N(even(n) + odd(n))



introduction Canonicity, categorically Synthetic Tait Computability

What are some of themorphisms in C?

• There is a morphism from (Y , g) to (X, f ):
a function π1 : Σn :N(even(n) + odd(n)) →N by projecting
out the first component

• There is a morphism from (X, f ) to (Y , g):
a function ι :N → Σn :N(even(n) + odd(n))



introduction Canonicity, categorically Synthetic Tait Computability

What are some of themorphisms in C?

• There is a morphism from (Y , g) to (X, f ):
a function π1 : Σn :N(even(n) + odd(n)) →N by projecting
out the first component

• There is a morphism from (X, f ) to (Y , g):
a function ι :N → Σn :N(even(n) + odd(n))



introduction Canonicity, categorically Synthetic Tait Computability

What does ι look like?

ι :N → Σn :N(even(n) + odd(n))

Maybe it is the case that ι(n) = (n, proof)?

But maybe it is some random function that doesn’t make sense?
e.g., ι(n) = (42, 42-isEven)?



introduction Canonicity, categorically Synthetic Tait Computability

What does ι look like?

ι :N → Σn :N(even(n) + odd(n))

Maybe it is the case that ι(n) = (n, proof)?

But maybe it is some random function that doesn’t make sense?
e.g., ι(n) = (42, 42-isEven)?



introduction Canonicity, categorically Synthetic Tait Computability

What does ι look like?

ι :N → Σn :N(even(n) + odd(n))

Maybe it is the case that ι(n) = (n, proof)?

But maybe it is some random function that doesn’t make sense?
e.g., ι(n) = (42, 42-isEven)?



introduction Canonicity, categorically Synthetic Tait Computability

Fundamental theorem

ι :N → Σn :N(even(n) + odd(n))

(X, f ) (Y , g)

(X, f )

ι

π1

It must be the case that π1 ◦ ι = idN.

It must be the case that ι(n) = (n, proof).



introduction Canonicity, categorically Synthetic Tait Computability

Fundamental theorem

ι :N → Σn :N(even(n) + odd(n))

(X, f ) (Y , g)

(X, f )

ι

π1

It must be the case that π1 ◦ ι = idN.

It must be the case that ι(n) = (n, proof).



introduction Canonicity, categorically Synthetic Tait Computability

Fundamental theorem

ι :N → Σn :N(even(n) + odd(n))

(X, f ) (Y , g)

(X, f )

ι

π1

It must be the case that π1 ◦ ι = idN.

It must be the case that ι(n) = (n, proof).



introduction Canonicity, categorically Synthetic Tait Computability

Our proof of canonicity would look much like this!



introduction Canonicity, categorically Synthetic Tait Computability

Simply-typed lambda calculus

We present an equational theory of simply-typed lambda
calculus with only booleans and functions as a signature SIG.

record SIG where
field

tp : Type
tm : tp → Type

bool : tp
yes : tm bool
no : tm bool

arr : tp → tp → tp
lam : (tm(A) → tm(B)) → tm (arr A B)
app : tm (arr A B) → tm A→ tm B

arrβ : app (lam f ) x = f x
arrη : lam (app f ) = f



introduction Canonicity, categorically Synthetic Tait Computability

Simply-typed lambda calculus

We present an equational theory of simply-typed lambda
calculus with only booleans and functions as a signature SIG.

record SIG where
field

tp : Type
tm : tp → Type

bool : tp
yes : tm bool
no : tm bool

arr : tp → tp → tp
lam : (tm(A) → tm(B)) → tm (arr A B)
app : tm (arr A B) → tm A→ tm B

arrβ : app (lam f ) x = f x
arrη : lam (app f ) = f



introduction Canonicity, categorically Synthetic Tait Computability

Simply-typed lambda calculus

We present an equational theory of simply-typed lambda
calculus with only booleans and functions as a signature SIG.

record SIG where
field

tp : Type
tm : tp → Type

bool : tp
yes : tm bool
no : tm bool

arr : tp → tp → tp
lam : (tm(A) → tm(B)) → tm (arr A B)
app : tm (arr A B) → tm A→ tm B

arrβ : app (lam f ) x = f x
arrη : lam (app f ) = f



introduction Canonicity, categorically Synthetic Tait Computability

Example terms

Example

lam (λx.x) : tm (arr bool bool)

which is traditionally written as λ(x : bool).x : bool → bool.

app (lam λ_.yes) no : tm bool

which is traditionally written as (λ_.yes) no : bool.
By using arrβ, we can show that the above term is equal to yes.



introduction Canonicity, categorically Synthetic Tait Computability

Example terms

Example

lam (λx.x) : tm (arr bool bool)

which is traditionally written as λ(x : bool).x : bool → bool.

app (lam λ_.yes) no : tm bool

which is traditionally written as (λ_.yes) no : bool.

By using arrβ, we can show that the above term is equal to yes.



introduction Canonicity, categorically Synthetic Tait Computability

Example terms

Example

lam (λx.x) : tm (arr bool bool)

which is traditionally written as λ(x : bool).x : bool → bool.

app (lam λ_.yes) no : tm bool

which is traditionally written as (λ_.yes) no : bool.
By using arrβ, we can show that the above term is equal to yes.



introduction Canonicity, categorically Synthetic Tait Computability

SIG induces a category C

tm(bool) ΣA:tptm(A)

tm(arr bool bool) 1 tp tp → tp

tp → tp → tp

⌟

π1
app(−,no)

yes no

lam(λ_.yes)
bool

arr

arr



introduction Canonicity, categorically Synthetic Tait Computability

Some special morphisms

• Closed terms of type A are morphisms from 1 to tm(A).

yes : 1→ tm(bool)
no : 1→ tm(bool)
app(−, no) ◦ lam(λ_.yes) : 1→ tm(bool)

Theorem (Canonicity)
For anymorphism b : 1→ tm(bool), it must be the case that b = yes or
b = no.



introduction Canonicity, categorically Synthetic Tait Computability

Some special morphisms

• Closed terms of type A are morphisms from 1 to tm(A).

yes : 1→ tm(bool)
no : 1→ tm(bool)
app(−, no) ◦ lam(λ_.yes) : 1→ tm(bool)

Theorem (Canonicity)
For anymorphism b : 1→ tm(bool), it must be the case that b = yes or
b = no.



introduction Canonicity, categorically Synthetic Tait Computability

Category of Computability Structures

Construct a category E as follows:

• Objects: computability structures
(A ∈ C, S ∈ Set, f : S→ HomC(1,A)).

Think as: for each morphism e : 1→ A in C, we have a set Se of
proofs that e is computable at type A.

• Morphisms: a morphism b : A→ A ′ and a function h : S→ S ′

such that:

S S ′

Hom(1,A) Hom(1,A ′)

h

f f ′

Hom(1,b)



introduction Canonicity, categorically Synthetic Tait Computability

Category of Computability Structures

Construct a category E as follows:

• Objects: computability structures
(A ∈ C, S ∈ Set, f : S→ HomC(1,A)).
Think as: for each morphism e : 1→ A in C, we have a set Se of
proofs that e is computable at type A.

• Morphisms: a morphism b : A→ A ′ and a function h : S→ S ′

such that:

S S ′

Hom(1,A) Hom(1,A ′)

h

f f ′

Hom(1,b)



introduction Canonicity, categorically Synthetic Tait Computability

Category of Computability Structures

Construct a category E as follows:

• Objects: computability structures
(A ∈ C, S ∈ Set, f : S→ HomC(1,A)).
Think as: for each morphism e : 1→ A in C, we have a set Se of
proofs that e is computable at type A.

• Morphisms: a morphism b : A→ A ′ and a function h : S→ S ′

such that:

S S ′

Hom(1,A) Hom(1,A ′)

h

f f ′

Hom(1,b)



introduction Canonicity, categorically Synthetic Tait Computability

What are some of the objects in E?

• tm(bool) = (tm(bool), {♠, ♣}, f )where:
f (♠) = yes
f (♣) = no

Define a functor F : C → E such that (in particular)
F(tm(bool)) = tm(bool).



introduction Canonicity, categorically Synthetic Tait Computability

What are some of the objects in E?

• tm(bool) = (tm(bool), {♠, ♣}, f )where:
f (♠) = yes
f (♣) = no

Define a functor F : C → E such that (in particular)
F(tm(bool)) = tm(bool).



introduction Canonicity, categorically Synthetic Tait Computability

FundamentalTheorem of Logical Relations

• Objects in C: A.

• Objects in E: A = (A, S, f ).

C E

C

F

IdC

π1

By construction, it must be the case that π1 ◦ F = IdC.



introduction Canonicity, categorically Synthetic Tait Computability

FundamentalTheorem of Logical Relations

• Objects in C: A.

• Objects in E: A = (A, S, f ).

C E

C

F

IdC

π1

By construction, it must be the case that π1 ◦ F = IdC.



introduction Canonicity, categorically Synthetic Tait Computability

Canonicity

Proof
Suppose we have a morphism b : 1→ tm(bool) in C.

Compute F(b) : 1→ tm(bool).
This means that F(b) consists of a morphism b ′ : 1→ tm(bool)
and a function h : 1Set → {♠, ♣} such that:

1Set {♠, ♣}

1Set = Hom(1, 1) Hom(1, tm(bool))

h

! f

b ′



introduction Canonicity, categorically Synthetic Tait Computability

Canonicity

Proof
Suppose we have a morphism b : 1→ tm(bool) in C.
Compute F(b) : 1→ tm(bool).

This means that F(b) consists of a morphism b ′ : 1→ tm(bool)
and a function h : 1Set → {♠, ♣} such that:

1Set {♠, ♣}

1Set = Hom(1, 1) Hom(1, tm(bool))

h

! f

b ′



introduction Canonicity, categorically Synthetic Tait Computability

Canonicity

Proof
Suppose we have a morphism b : 1→ tm(bool) in C.
Compute F(b) : 1→ tm(bool).
This means that F(b) consists of a morphism b ′ : 1→ tm(bool)
and a function h : 1Set → {♠, ♣} such that:

1Set {♠, ♣}

1Set = Hom(1, 1) Hom(1, tm(bool))

h

! f

b ′



introduction Canonicity, categorically Synthetic Tait Computability

Canonicity

Proof (Cont.)
Moreover, π1(F(b)) = b ′. By the fundamental theorem, b ′ = b.

1Set {♠, ♣}

1Set = Hom(1, 1) Hom(1, tm(bool))

h

! f

b

If h = ♠, then b = yes (because f (♠) = yes).
If h = ♣, then b = no (because f (♣) = no).



introduction Canonicity, categorically Synthetic Tait Computability

Canonicity

Proof (Cont.)
Moreover, π1(F(b)) = b ′. By the fundamental theorem, b ′ = b.

1Set {♠, ♣}

1Set = Hom(1, 1) Hom(1, tm(bool))

h

! f

b

If h = ♠, then b = yes (because f (♠) = yes).
If h = ♣, then b = no (because f (♣) = no).



introduction Canonicity, categorically Synthetic Tait Computability

Canonicity

Proof (Cont.)
Moreover, π1(F(b)) = b ′. By the fundamental theorem, b ′ = b.

1Set {♠, ♣}

1Set = Hom(1, 1) Hom(1, tm(bool))

h

! f

b

If h = ♠, then b = yes (because f (♠) = yes).
If h = ♣, then b = no (because f (♣) = no).



introduction Canonicity, categorically Synthetic Tait Computability

What is this proof?

• A construction of a computability structure category E by
gluing syntax and semantics.
◦ Follows a general construction of Artin Gluing.

• A construction of a functor F : C → E.
◦ Tedious! A lot of conditions to check.
◦ F is a functorialmodel of the language.



introduction Canonicity, categorically Synthetic Tait Computability

What is this proof?

• A construction of a computability structure category E by
gluing syntax and semantics.

◦ Follows a general construction of Artin Gluing.

• A construction of a functor F : C → E.
◦ Tedious! A lot of conditions to check.
◦ F is a functorialmodel of the language.



introduction Canonicity, categorically Synthetic Tait Computability

What is this proof?

• A construction of a computability structure category E by
gluing syntax and semantics.
◦ Follows a general construction of Artin Gluing.

• A construction of a functor F : C → E.
◦ Tedious! A lot of conditions to check.
◦ F is a functorialmodel of the language.



introduction Canonicity, categorically Synthetic Tait Computability

What is this proof?

• A construction of a computability structure category E by
gluing syntax and semantics.
◦ Follows a general construction of Artin Gluing.

• A construction of a functor F : C → E.

◦ Tedious! A lot of conditions to check.
◦ F is a functorialmodel of the language.



introduction Canonicity, categorically Synthetic Tait Computability

What is this proof?

• A construction of a computability structure category E by
gluing syntax and semantics.
◦ Follows a general construction of Artin Gluing.

• A construction of a functor F : C → E.
◦ Tedious! A lot of conditions to check.
◦ F is a functorialmodel of the language.



introduction Canonicity, categorically Synthetic Tait Computability

What is amodel?

Any implementationM : SIG is amodel of the language!

M.tp = Type
M.tm(A) = A

M.bool = 1+ 1
M.yes = inl ⋆
M.no = inr ⋆

M.arr A B = A→ B
M.lam f = f
M.app f x = f x



introduction Canonicity, categorically Synthetic Tait Computability

What is amodel?
Any implementationM : SIG is amodel of the language!

M.tp = Type
M.tm(A) = A

M.bool = 1+ 1
M.yes = inl ⋆
M.no = inr ⋆

M.arr A B = A→ B
M.lam f = f
M.app f x = f x



introduction Canonicity, categorically Synthetic Tait Computability

What is amodel?
Any implementationM : SIG is amodel of the language!

M.tp = Type
M.tm(A) = A

M.bool = 1+ 1
M.yes = inl ⋆
M.no = inr ⋆

M.arr A B = A→ B
M.lam f = f
M.app f x = f x



introduction Canonicity, categorically Synthetic Tait Computability

Our Plan

• Suppose we have a modelM : SIG that corresponds to the
syntax.

• Construct a modelM : SIG that corresponds to the gluing of
syntax and semantics, such that

M M

M

bluify

id



introduction Canonicity, categorically Synthetic Tait Computability

Our Plan

• Suppose we have a modelM : SIG that corresponds to the
syntax.

• Construct a modelM : SIG that corresponds to the gluing of
syntax and semantics, such that

M M

M

bluify

id



introduction Canonicity, categorically Synthetic Tait Computability

Piecing things together

C E

M M

C

M

F

IdC

π1
bluify

id



introduction Canonicity, categorically Synthetic Tait Computability

Somemachinary in the dependent type theory

• A proposition syn : Prop.
◦ If syn holds, then we say that we are in the syntactic phase.

• Extension type: {A | syn ↪→ a0}where a0 : A.
◦ A term a : {A | syn ↪→ a0} is a term a : A such that under the
syntactic phase a = a0.



introduction Canonicity, categorically Synthetic Tait Computability

Somemachinary in the dependent type theory

• A proposition syn : Prop.
◦ If syn holds, then we say that we are in the syntactic phase.

• Extension type: {A | syn ↪→ a0}where a0 : A.
◦ A term a : {A | syn ↪→ a0} is a term a : A such that under the
syntactic phase a = a0.



introduction Canonicity, categorically Synthetic Tait Computability

New goal

ConstructM : {SIG | syn ↪→ M}.

M M : {SIG | syn ↪→ M}

M

bluify

id
enter syntactic phase



introduction Canonicity, categorically Synthetic Tait Computability

ConstructingM

M.tp : {Type | syn ↪→ M.tp}
M.tm : {M.tp → Type | syn ↪→ M.tm}

M.bool : {M.tp | syn ↪→ M.bool}
M.yes : {M.tm(M.bool) | syn ↪→ M.yes}
M.no : {M.tm(M.bool) | syn ↪→ M.no}

· · ·



introduction Canonicity, categorically Synthetic Tait Computability

ConstructingM

M.tp : {Type | syn ↪→ M.tp}
M.tp = ΣA:M.tp{Type | syn ↪→ M.tm(A)}

Think as: the computability structure ofM.tp is for each
syntactic type A, a collection of terms of that type and proofs
that those terms are computable.

Check: under the syntactic phase (assuming syn),

M.tp
=ΣA:M.tp{Type | syn ↪→ M.tm(A)}
∼=ΣA:M.tp1
∼=M.tp



introduction Canonicity, categorically Synthetic Tait Computability

ConstructingM

M.tp : {Type | syn ↪→ M.tp}
M.tp = ΣA:M.tp{Type | syn ↪→ M.tm(A)}

Think as: the computability structure ofM.tp is for each
syntactic type A, a collection of terms of that type and proofs
that those terms are computable.

Check: under the syntactic phase (assuming syn),

M.tp
=ΣA:M.tp{Type | syn ↪→ M.tm(A)}
∼=ΣA:M.tp1
∼=M.tp



introduction Canonicity, categorically Synthetic Tait Computability

ConstructingM

M.tp : {Type | syn ↪→ M.tp}
M.tp = ΣA:M.tp{Type | syn ↪→ M.tm(A)}

Think as: the computability structure ofM.tp is for each
syntactic type A, a collection of terms of that type and proofs
that those terms are computable.

Check: under the syntactic phase (assuming syn),

M.tp
=ΣA:M.tp{Type | syn ↪→ M.tm(A)}
∼=ΣA:M.tp1
∼=M.tp



introduction Canonicity, categorically Synthetic Tait Computability

ConstructingM

M.tp : {Type | syn ↪→ M.tp}
M.tp = ΣA:M.tp{Type | syn ↪→ M.tm(A)}

M.tm : {M.tp → Type | syn ↪→ M.tm}

M.tm(A) = π2A



introduction Canonicity, categorically Synthetic Tait Computability

ConstructingM

M.tp : {Type | syn ↪→ M.tp}
M.tp = ΣA:M.tp{Type | syn ↪→ M.tm(A)}

M.bool : {M.tp | syn ↪→ M.bool}
M.bool = (M.bool, Σb:tm(bool)(b = M.yes) + (b = M.no))1

M.yes : {M.tm(M.bool) | syn ↪→ M.yes}
M.yes = (M.yes, inl(✓))

1Well, I lied slightly.



introduction Canonicity, categorically Synthetic Tait Computability

ConstructingM

Everything else is just a routine programming exercise in a
dependently typed language.

In almost all cases, there is only one way that makes the
type-checker happy.

Just like in traditional Logical Relations, there is no creativity
beyond the base types.



introduction Canonicity, categorically Synthetic Tait Computability

ConstructingM

Everything else is just a routine programming exercise in a
dependently typed language.

In almost all cases, there is only one way that makes the
type-checker happy.

Just like in traditional Logical Relations, there is no creativity
beyond the base types.



introduction Canonicity, categorically Synthetic Tait Computability

And that is Synthetic Tait’s Computability!



introduction Canonicity, categorically Synthetic Tait Computability

What is this proof?

• A programming exercise to constructM : {SIG | syn ↪→ M} in
a dependently typed language.

• Everything else can be black-boxed if you don’t want to deal
with category theory.

C E

M M

C

M

F

IdC

π1
bluify

id



introduction Canonicity, categorically Synthetic Tait Computability

What is this proof?

• A programming exercise to constructM : {SIG | syn ↪→ M} in
a dependently typed language.

• Everything else can be black-boxed if you don’t want to deal
with category theory.

C E

M M

C

M

F

IdC

π1
bluify

id



introduction Canonicity, categorically Synthetic Tait Computability

Synthetic Tait Computability in RealWorld

Parametricity for anMLmodule calculus Sterling &Harper
Normalization for Cartesian Cubical TypeTheory Sterling & Angiuli
Normalization for a multimodal type theory Gratzer
...

Canonicity for Cost-Aware Logical Framework ,



introduction Canonicity, categorically Synthetic Tait Computability

Synthetic Tait Computability in RealWorld

Parametricity for anMLmodule calculus Sterling &Harper
Normalization for Cartesian Cubical TypeTheory Sterling & Angiuli
Normalization for a multimodal type theory Gratzer
...

Canonicity for Cost-Aware Logical Framework ,



introduction Canonicity, categorically Synthetic Tait Computability

Conclusion

• Syntax and semantics of a programming language displays a
phase distinction that can be manipulated synthetically.

• Synthetic Tait Computability exploits this by gluing syntax
and semantics together.

• Proving meta-theoretic properties by Logical Relations can be
reduced to a programming exercise in a dependently typed
language.


	Introduction
	Canonicity, categorically
	Synthetic Tait Computability

